Estimates of the norm of the convolution operator in anisotropic Besov spaces with the dominated mixed derivative

Show simple item record

dc.contributor.author Sadykova, K.K.
dc.contributor.author Tleukhanova, N.T.
dc.date.accessioned 2019-10-30T08:57:11Z
dc.date.available 2019-10-30T08:57:11Z
dc.date.issued 2019-09-30
dc.identifier.citation Sadykova, K.K. Estimates of the norm of the convolution operator in anisotropic Besov spaces with the dominated mixed derivative / K.K. Sadykova, N.T. Tleukhanova // Қарағанды универисетінің хабаршысы. Математика сериясы. = Вестник Карагандинского университета. Серия Математика. = Bulletin of the Karaganda University. Mathematics series. – 2019. - № 3. – P. 51-59. ru_RU
dc.identifier.issn 2518-7929
dc.identifier.issn 2663-5011
dc.identifier.uri http://rep.ksu.kz//handle/data/8529
dc.description.abstract In this paper, we investigate the boundedness of the norm of the convolution operator in Sobolev spaces with the dominated mixed derivative and anisotropic Nikolsky-Besov spaces. For Sobolev spaces with the dominated mixed derivatives, an analogue of Young’s inequality is obtained, namely, relations of the form Wγp ∗ Wβr → Wαq (1) are proved when the corresponding conditions on the parameters are satisfied. The main goal of the paper is to solve the following problems. Let f and g be functions from some classes of the Nikolsky-Besov space scale. We would like to find the Nikolsky-Besov space such that the convolution f ∗ g belongs to this space. Using relation (1) and the Nursultanov interpolation theorem for anisotropic spaces, an analogue of the O’Neil theorem was obtained for the Nikolsky-Besov space scale Bαpq, where α, p, q are vector parameters. Relations of the form Bγps1∗ Bβrs2 → Bαqs are obtained, with the corresponding ratios of vector parameters. The theorems obtained in this paper complement the results of Batyrov and Burenkov, where similar problems were considered in isotropic Nikolsky-Besov spaces, that is, in spaces where the parameters are scalars. ru_RU
dc.language.iso en ru_RU
dc.publisher Ye.A.Buketov Karaganda State University Publishing house ru_RU
dc.relation.ispartofseries Қарағанды универисетінің хабаршысы. Математика сериясы. = Вестник Карагандинского университета. Серия Математика. = Bulletin of the Karaganda University. Mathematics series.;№ 3(95)/2019
dc.subject convolution operator ru_RU
dc.subject anisotropic Sobolev and Besov spaces ru_RU
dc.subject interpolation ru_RU
dc.title Estimates of the norm of the convolution operator in anisotropic Besov spaces with the dominated mixed derivative ru_RU
dc.title.alternative Аралас туындысы басым анизотропты Бесов кеңістігіндегі үйірткі операторының нормаларын бағалау ru_RU
dc.title.alternative Оценки нормы оператора свертки в анизотропных пространствах Бесова с доминирующем смешанной производном ru_RU
dc.type Article ru_RU


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account