On multipliers in weighted Sobolev spaces. Part I

Show simple item record

dc.contributor.author L.Kussainova, L.
dc.contributor.author Myrzagaliyeva, A.
dc.date.accessioned 2016-09-01T08:47:31Z
dc.date.available 2016-09-01T08:47:31Z
dc.date.issued 2016-06-30
dc.identifier.issn 0142-0843
dc.identifier.uri http://rep.ksu.kz/handle/data/71
dc.description.abstract Let X, Y be Banach spaces whose elements are functions y : Ω → R. We say that a function z : Ω → R is a pointwise multiplier on the pair (X, Y ), if T x = zx ∈ Y and the operator T : X → Y is bounded. M (X → Y ) denotes the multiplier space on the pair (X, Y ). We introduce the norm lz; M (X → Y )l = lT ; X → Y l in M (X → Y ). Let 1 ≤ p < ∞. Let m be an integer. W m denotes the weighted Sobolev space with m 1/p 1/p the finite norm lulW m p,ω0 ,ω1 l = lω0 |∇mu|lLp + lω1 ulLp,v . The aim of this work is to obtain descriptions of multiplier spaces for the pair of weighted Sobolev spaces (W l q,ω0 ,ω1 ). ru_RU
dc.language.iso other ru_RU
dc.publisher Вестник Карагандинского университета ru_RU
dc.relation.ispartofseries Математика;
dc.subject weighted Sobolev space ru_RU
dc.subject pointwise multiplier ru_RU
dc.title On multipliers in weighted Sobolev spaces. Part I ru_RU
dc.type Article ru_RU

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account