Об ограниченности одного класса интегральных операторов с переменными пределами интегрирования

Show simple item record

dc.contributor.author Арендаренко, Л.С.
dc.date.accessioned 2019-04-11T10:28:46Z
dc.date.available 2019-04-11T10:28:46Z
dc.date.issued 2012
dc.identifier.citation Арендаренко Л.С. Об ограниченности одного класса интегральных операторов с переменными пределами интегрирования /Л.С.Арендаренко //Қарағанды универисетінің хабаршысы. Математика сериясы.=Вестник Карагандинского университета. Серия Математика=Bulletin of the Karaganda University. Mathematics Series.-2012.-№2.-Р.20-26 ru_RU
dc.identifier.issn 0142-0843
dc.identifier.uri http://rep.ksu.kz:80//handle/data/5031
dc.description.abstract Мақалада K(x, s) теріс емес үздіксіз ядросымен Kf (x) = J K(x,s) f (s)ds, x e (a, b), түріндегі инте- гралдау шектері айнымалы болатын интегралдық операторлар қарастырылады. Автормен осы оператордың Lpv(a, b) Лебег салмақтық кеңістігінен p және q интегралдау параметрлері 1 < q < p <т қатынасын қанағаттандырған жағдай үшін Lqw (a,b) Лебег салмақтың кеңістігіне шенелгендік критерийі алынды. Қарастырылатын оператор ядросы, Ойнаровтың жетілдірілген шартын қанағаттандыратын ядролар класына қарағанда, кеңірек класта жатыр. This paper deals with integral operator with variable limits of integration, which is defined by the formula: Р(x) Kf (x) = J K(x,s) f (s)ds, x e (a,b). Here the kernel K(x,s)is non-negative and continuous function. The a( x) author derived a new criterion for the operator to be bounded from weighed Lebesgue space Lp v(a, b)to weighed Lebesgue space Lq w (a,b) in case the parameters p and q satisfy the condition 1 < q < p < «. The kernel K(x, s) of the operator considered is satisfy the condition which is more general that the modified Oinarov condition. ru_RU
dc.language.iso en ru_RU
dc.publisher Изд-во КарГУ ru_RU
dc.relation.ispartofseries Вестник Карагандинского университета. Серия Математика;№2(66)/2012
dc.title Об ограниченности одного класса интегральных операторов с переменными пределами интегрирования ru_RU
dc.title.alternative On boundedness of a class of integral operators with variable limits of integration ru_RU
dc.type Article ru_RU


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account