dc.contributor.author |
Kal’menov, T.Sh. |
|
dc.contributor.author |
Arepova, G.D. |
|
dc.date.accessioned |
2019-03-04T09:57:25Z |
|
dc.date.available |
2019-03-04T09:57:25Z |
|
dc.date.issued |
2018-09-29 |
|
dc.identifier.citation |
Kal’menov, T.Sh. A criterion for the existence of soliton solutions of telegraph equation/T.Sh. Kal’menov, G.D. Arepova //Қарағанды универисетінің хабаршысы. МАТЕМАТИКА Сериясы.=Вестник Карагандинского университета. Серия МАТЕМАТИКА.=Bulletin of the Karaganda University. MATHEMATICS Series.-2018.- №3.-Р.45-52. |
ru_RU |
dc.identifier.issn |
2518-7929 |
|
dc.identifier.uri |
http://rep.ksu.kz:80//handle/data/3991 |
|
dc.description.abstract |
In this paper we consider a telegraph equation. In the case of a rectangular domain for the Cauchy potential the lateral boundary conditions obtained. When considering the equation in the first quadrant a criterion for the existence of soliton solutions is obtained. |
ru_RU |
dc.language.iso |
other |
ru_RU |
dc.publisher |
Ye.A.Buketov Karaganda State University Publ. |
ru_RU |
dc.relation.ispartofseries |
Қарағанды универисетінің хабаршысы. МАТЕМАТИКА Сериясы.=Вестник Карагандинского университета. Серия МАТЕМАТИКА.=Bulletin of the Karaganda University. MATHEMATICS Series.;№ 3(91)/2018 |
|
dc.subject |
telegraph equation |
ru_RU |
dc.subject |
telegraph potential |
ru_RU |
dc.subject |
fundamental solution |
ru_RU |
dc.subject |
soliton solution |
ru_RU |
dc.subject |
nonlocal boundary conditions |
ru_RU |
dc.subject |
convolution |
ru_RU |
dc.title |
A criterion for the existence of soliton solutions of telegraph equation |
ru_RU |
dc.title.alternative |
Критерий существования солитонных решений телеграфного уравнения |
ru_RU |
dc.title.alternative |
Телеграф теңдеуінің солитон шешiмдерiнiң бар болуының қажетт және жеткшжт шарты |
ru_RU |
dc.type |
Article |
ru_RU |