dc.contributor.author |
Bimendina, A. U. |
|
dc.contributor.author |
Smailov, E. S. |
|
dc.date.accessioned |
2018-04-17T05:36:51Z |
|
dc.date.available |
2018-04-17T05:36:51Z |
|
dc.date.issued |
2016-05 |
|
dc.identifier.citation |
Bimendina A. U. Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space L pθ [0, 1), 1<p<+∞, 1<θ<+∞/ A. U. Bimendina, E. S. Smailov//Proceedings of the Steklov Institute of Mathematics.-2016.- №1(293).-pp 77–98 |
ru_RU |
dc.identifier.issn |
0081-5438 |
|
dc.identifier.uri |
http://rep.ksu.kz/handle/data/2577 |
|
dc.description.abstract |
For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol’skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space. |
ru_RU |
dc.language.iso |
en |
ru_RU |
dc.publisher |
Pleiades Publishing |
ru_RU |
dc.relation.ispartofseries |
Proceedings of the Steklov Institute of Mathematics;№1(293) |
|
dc.title |
Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space L pθ [0, 1), 1<p<+∞, 1<θ<+∞ |
ru_RU |
dc.type |
Article |
ru_RU |