Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space L pθ [0, 1), 1<p<+∞, 1<θ<+∞

Show simple item record

dc.contributor.author Bimendina, A. U.
dc.contributor.author Smailov, E. S.
dc.date.accessioned 2018-04-17T05:36:51Z
dc.date.available 2018-04-17T05:36:51Z
dc.date.issued 2016-05
dc.identifier.citation Bimendina A. U. Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space L pθ [0, 1), 1<p<+∞, 1<θ<+∞/ A. U. Bimendina, E. S. Smailov//Proceedings of the Steklov Institute of Mathematics.-2016.- №1(293).-pp 77–98 ru_RU
dc.identifier.issn 0081-5438
dc.identifier.uri http://rep.ksu.kz/handle/data/2577
dc.description.abstract For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol’skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space. ru_RU
dc.language.iso en ru_RU
dc.publisher Pleiades Publishing ru_RU
dc.relation.ispartofseries Proceedings of the Steklov Institute of Mathematics;№1(293)
dc.title Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space L pθ [0, 1), 1<p<+∞, 1<θ<+∞ ru_RU
dc.type Article ru_RU


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account