Connection of Jonsson theory with some Jonsson polygons theories

The main result of this article is connected with some Jonsson theory of polygons and is devoted to obtaining a description of the characteristic of such polygons using invariants related to them. With this limited consideration (the group is a strong particular case of a monoid) were obtained for such a theory of the property of perfection and Jonsson property. Thus, for some existential complete and perfect Jonsson theories, there is the same Jonsson theory of polygons, in which two Jonsson theories are syntactically similar.

Keywords: Jonsson theory, semantic model, perfect theory, polygon, model companion, syntactic and semantic similarity of Jonsson theories.

In this article we will consider the connection of the Jonsson theory with a certain Jonsson theory of polygons. In particular, the Jonsson theory will be existentially complete and perfect. These restrictions are connected with the fact that the Jonsson theories are generally not complete and existential completeness is the minimum possible requirement for formulas with quantifiers. On another hand, in the imperfect case, we have very few algebraic examples to achieve any more descriptive results. The most striking example of imperfect Jonsson theory is the theory of groups, for which it has been proven that it does not have a model companion. All our previous achievements in the field of the study of Jonsson theories have been associated with the technique of working on a model companion of the theory under consideration [1-4]. The main idea that prompted us to write this article was the idea of transferring the syntactic similarity of the complete theories from [5] to the syntactic similarity of Jonsson theories [6-8]. In [5], it was shown that any complete theory is syntactically similar to a certain polygon (i.e., the theory of this polygon). In English literature, the term polygon over the domain is Jonsson theories [6-8]. In this article, we follow the terminology of Professor T.G. Mustafin, whom he first defined and formulated model-theoretical concepts and issues related to polygons [13-16].

We give a list of the necessary definitions of concepts and their necessary model-theoretical properties. The following definition belongs to T.G. Mustafin [5].

Definition 1. Let T_1 and T_2 be complete theories. We will speak, as T_1 and T_2 are syntactically similar, if there is a bijection $f : F(T_1) \rightarrow F(T_2)$ exists bijection such that:

1) restriction f to $F_1(T_1)$ is isomorphism of Boolean algebras $F_n(T_1)$ and $F_n(T_2)$, $n < \omega$;
2) $f(\exists v_{n+1}\varphi) = \exists v_{n+1}f(\varphi)$, $\varphi \in F_n(T_1), n < \omega$;
3) $f(v_1 = v_2) = (v_1 = v_2)$.

Let T be an arbitrary Jonsson theory, then $E(T) = \bigcup_{n<\omega} E_n(T)$, where $E_n(T)$ is a lattice of \exists-formulas with n free variables, T^* is a center of Jonsson theory T, i.e. $T^* = Th(C)$, where C is semantic model of Jonsson T theory in the sense of [14].

The following definition was introduced by first author of this article.

Definition 2. Let T_1 and T_2 are arbitrary Jonsson theories. We say, that T_1 and T_2 are Jonsson’s syntactically similar, if exists a bijection $f : E(T_1) \rightarrow E(T_2)$ such that:

1) restriction f to $E_n(T_1)$ is isomorphism of lattices $E_n(T_1)$ and $E_n(T_2)$, $n < \omega$;
2) $f(\exists v_{n+1}\varphi) = \exists v_{n+1}f(\varphi)$, $\varphi \in E_n(T_1), n < \omega$;
3) $f(v_1 = v_2) = (v_1 = v_2)$.

Definition 3. The Jonsson theory of T is called perfect if every semantic model of T is a saturated model of T^*.

Definition 4. By a polygon over a monoid S (or we called as S - acts) we mean a structure with only unary functions $(A; f_\alpha : \alpha \in S)$ such that:

1) $f_\varepsilon(a)$, $\forall a \in A$, where ε is the unit of S;
2) $f_{\alpha,\beta}(a) = f_\alpha(f_\beta(a))$, $\forall \alpha, \beta \in S$, $\forall a \in A$.

Keywords: Jonsson theory, semantic model, perfect theory, polygon, model companion, syntactic and semantic similarity of Jonsson theories.

In this article we will consider the connection of the Jonsson theory with a certain Jonsson theory of polygons. In particular, the Jonsson theory will be existentially complete and perfect. These restrictions are connected with the fact that the Jonsson theories are generally not complete and existential completeness is the minimum possible requirement for formulas with quantifiers. On another hand, in the imperfect case, we have very few algebraic examples to achieve any more descriptive results. The most striking example of imperfect Jonsson theory is the theory of groups, for which it has been proven that it does not have a model companion. All our previous achievements in the field of the study of Jonsson theories have been associated with the technique of working on a model companion of the theory under consideration [1-4]. The main idea that prompted us to write this article was the idea of transferring the syntactic similarity of the complete theories from [5] to the syntactic similarity of Jonsson theories [6-8]. In [5], it was shown that any complete theory is syntactically similar to a certain polygon (i.e., the theory of this polygon). In English literature, the term polygon over the domain is Jonsson theories which he first defined and formulated model-theoretical concepts and issues related to polygons [13-16].
Connection of Jonsson theory ...

Definition 5. A theory of T is called model complete if, for any model of A and B of theory T, such that $A \subseteq B \Rightarrow A \preceq B$. Equivalently, every isomorphic embedding is an elementary embedding.

Consider the concepts of model completeness, model companion and model consistency theory T [17].

Definition 6. T and T_1 is mutually model consistent, i.e. any model of the theory T is embedded in the model of the theory T_1. And simultaneously the inverse statement is true.

Definition 7. Let T, T^* be L-theories. T^* is a model completion of T if:

1) T and T^* are mutually model consistent;
2) T^* is model complete;
3) If \mathfrak{M}, then $T^* \cup D(\mathfrak{M})$ is complete.

T^* is a model companion of T if (1) and (2) hold.

Theorem 1 [5]. For every T there is a polygon theory T_H that if the signature T is finite, then T_H is a hull of T, and otherwise - almost a hull T.

Theorem 2 [18]. Let T be Jonsson theory. Then the following conditions are equivalent:

1) T is perfect;
2) T has a model companion.

In the article [19] polygons over S was considered, where S is a group. The main result of this article is obtaining the description of characterization of such polygons with the help of concerning invariants. Under this restricted consideration (a group is strong particular case of a monoid) was obtained the properties of perfectness and Jonssoness. By an occasion we paid attention from this work with the following lemma:

Lemma [19]. Let T be an α-Jonsson theory and all the completions of T admit the elimination of quantifiers. Then

1) T is perfect;
2) T is 0-Jonsson.

And as a consequences of this lemma for us the point 1 from the following theorem is important.

Theorem 3 [19]. 1) Each α-Jonsson theory of polygons is perfect and it is a Jonsson theory for all α, $0 \leq \alpha \leq \omega$.

It is not surprised because from the article [20] follows that even for regular polygon there are non model complete regular polygons. It means that there are sufficient many non saturated semantic models of polygons.

Earlier the first author of this work have got the link between both kind of similarities for existentially complete and perfect two Jonsson theories:

Theorem 4 [21]. Let T_1 and T_2 be \exists - complete perfect Jonsson theories. Then following conditions are equivalent:

1) T_1 and T_2 are Jonsson’s syntactically similar;
2) T_1^* and T_2^* are syntactically similar (in the sense of [5]).

Essentially that the centers of Jonsson theories are complete theories and we can proceed to transfer the elementary properties of centers onto Jonsson theories. Eventually it is sufficient to check implementation of similarity for Jonsson theories over lattices of existentially formulas.

The main result of this article is the following theorem.

Theorem 5. Let T be \exists-complete perfect Jonsson theory \exists- complete perfect then there is $T^* - \exists$- complete perfect Jonsson theory of polygons, such that:

Theory T will be J syntactically similar to theory T^*.

Proof. For proof, we note the following facts:

1) If Jonsson theory T is perfect, its center $T^* = Th(C)$ is Jonsson theory, where C is a semantic model of T. The proof can be extracted from the fact that Jonsson theory is perfect if and only if its center T^* is a model companion of T.

2) If two complete theories T_1 and T_2 are syntactically similar to each other in the sense of [5], then they are semantically similar to each other in the sense of [5]. The proof can be extracted from [5].

3) Semantically similar theories in the sense of [5] are invariant regarding to the first order semantic properties, which include the formula properties of elements and a subset of models of these theories.

Let us recall the definition of semantic property [5].

Definition 8. A property (or a notion) of theories (or models, or elements of models) is called semantic if and only if it is invariant relative to semantic similarity.

For example from [5] it is known that:
Proposition 1 [5]. The following properties and notions are semantic:

1. type;
2. forking;
3. λ-stability;
4. Lascar rank;
5. Strong type;
6. Morley sequence;
7. Orthogonality, regularity of types;
8. $I(\kappa, T)$ - the spectrum function.

4) Being a Jonsson theory is a semantic property. The proof follows from [5, 15].

Since for any complete theory from Theorem 1 there follows the existence of some complete theory of polygons, we can consider in particular some complete Jonsson theory T_1^* that satisfies the condition of Theorem 4, i.e T_1^* is the center of some complete perfect Jonsson theory T_1. Then T_1^* is syntactically similar in the sense of [5] to some complete theory of polygons T_Π. By virtue of the above facts 1–4 and Theorems 1, 4, we can conclude that T_1^* is a complete and model complete Jonsson theory. Then there is some Jonsson theory T_Π^* that satisfies the condition of Theorem 4 and T_Π^* is the center of the theory T_Π. Then, by virtue of Theorem 4, we can conclude that T_Π^* is the desired Jonsson theory of polygons satisfying Theorem 5, q.e.d.

All undetermined concepts in this article can be extracted from [21].

References

А.Р. Ешкеев, Г.А. Уркен

Кейбір йонсондық теория полигондарымен
йонсондық теорияның байланнысы

Макаланың негізгі нәтижелерінің кейбір йонсондық теория полигондарымен йонсондық теорияның байланнысы және негізгі нәтижелерінің кейбір йонсондық теорияның байланнысы.

Шектелген касиеттер (тобық теорияның касиеттері) теорияның нәтижелері және негізгі нәтижелерінің кейбір йонсондық теорияның байланнысы.

Кілт сөздер: йонсондық теория, семантикалық модель, кемел теория, полигон, модельді компаньон, синтаксичеес кемел және семантикалық уқсастылығы.

А.Р. Ешкеев, Г.А. Уркен

Связь йонсоновской теории с некоторой йонсоновской теорией полигонов

Основной результат данной статьи связан с некоторой йонсоновской теорией полигонов и посвящен получению описания характеристик таких полигонов с помощью относящихся к ним инвариантов. При этом ограниченном рассмотрении (группа является сильным частным случаем моноида) были получены для такой теории свойства совершенности и йонсоновости. Таким образом, для некоторых существенно полных и совершенных йонсоновских теорий существует такая же йонсоновская теория полигонов, в которой две йонсоновские теории синтаксически подобны.

Ключевые слова: йонсоновская теория, семантическая модель, совершенная теория, полигон, модельный компаньон, синтаксическое и семантическое подобия йонсоновских теорий.
References

20 Ovchinnikova, E.V. (2001). Ne lineino uporadiochenmyi monoid, nad kotorym klass rehuliarnykh polihonov polon, no ne modelno polon [Non linearly ordered monoid over which the class of regular polygons is complete but not model is complete]. *Algebra i teoriia modelei*. Novosibirsk: Izdatelstvo NHTU [in Russian].