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1. INTRODUCTION
his/article is related to the study of important concepts of the modern Model
h , such as independence, simplicity, forking, Morley rank, strong minimality,
dular geometry in the framework of the study of Jonsson theories. The relevance
the study of these issues, first of all, is dictated by the fact that Jonsson theories,

generally speaking, are not complete, but at the same time, all the above concepts
have been defined and have a significant development within the framework of the
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study of complete theories. Nevertheless, such classical objects as groups, Abelian
groups, fields of fixed characteristic, modules, important classes of lattices, and
polygons are examples of algebraic systems whose theories of classes are Jonsson
theories.

In the classical Model Theory, one of the modern trends is the "geometric"approach
to the study of the abstract independence’s properties of the considered structures.
Its essence lies in specifying special conditions in the form of axioms, which must
be satisfied by definable subsets of the considered models. For example 1n
when definable closures coincide with algebraic closures of given subsets
notice that the structural properties of such a model in the sense of d1mens10
very similar to vector spaces.

In this article, we adapt the elements independence concept of
semantic model by an axiomatic way, setting some binary relatlo

and the corresponding geometry of definable subsets of the se del of the
Jonsson spectrum’s central class. Moreover, we transfer the g results
for complete theories in the framework of studying a simpl cl the Jonsson

mtlon 29) of
ion of the Jonsson

spectrum, where as a simple class means the Jonsson an
a simple complete theory. An important role in&
spectrum is played the central types of cosemanticness ses of the Jonsson spectrum
of the axiomatizable class of an arbitrary s1gn Is. The central type of
Jonsson theory is a certain syntactlc in i uniquely determined with

pe with the kind of stability [1],
[2] corresponding to the given enrich well known that enrichment with
predicate and constant is an admissible e ent. In this work, enrichment occurs
due to the unary predicate and éonstants. It should be noted that the emergence of
new types of stability with garious enrichments of the signature, and at the same
time generalizing the concept ical stability, in itself is an interesting scientific
fact, and this problem % n actively studied within the framework of the study

of complete theo [oreover, it turned out that the concept of Jonssonnes
is not always pre ith admissible enrichments. At the moment, we do
not know ho d this rather complicated obstacle in the general case,
which comp estrict ourselves to the framework of the so-called hereditary
i theor said to be hereditary if, for any admissible enrichment, it
roperty of Jonssonness.
esults are proved for some fixed Jonsson spectrum. Earlier, results
e Jonsson spectrum has already been obtained, which allow us to
et this is not a simple generalization of the concept of Jonsson theory,
u rtain syntactic invariant of an arbitrary model of an arbitrary signature
connection with the fact that the concept of cosemanticness generalizes the
ncept of elementary equivalence. For example, in the papers [3], [4], results were
obtained that generalize the classical classification theorems about the elementary
equivalence of Abelian groups and modules. It is also clear that the study of the
properties of the elements of a fixed Jonsson theory’s semantic model using modern
methods associated with the study of the nonforking property in the framework
of simple theories will allow us to study in more detail the structure of imperfect
Jonsson theories. A striking example of such theories is the group theory.
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In earlier works on the study of Jonsson theories [3], [4], [5], [6], has been studied
well enough the connection between Jonsson theory and its class of existentially
closed models and allowed to highlight the topics of positive Jonsson theories [7]
and to define new problems in this direction.

The work consists of 6 sections, including an introduction. The second section
provides information on Jonsson theories and their models. In the third section,
we study the axiomatic definition of the concept of nonforking on Jonsson subsets
of some semantic model. In the fourth section, we study the geometry of stro
minimal sets on subsets of some fixed semantic model. In the fifth sectlon’
rem 16 is proved, which connects the notion of nonforking, given on subsets of a
fixed semantic model, and the notion of independence. The essence of thiS result
the Jonsson analog of the well-known Kim-Pillay result (Theorem 1
sixth section, we present a criterion for uncountable categoricity (
the language of strong minimality of the central type of the heredita of a ﬁxed
Robinson spectrum’s cosemanticness. It is easy to see that th obinson
spectrum is a special case of Jonsson spectrum, since in t
instead of Jonsson theories we consider their special cases Jongson untversal theorles.

We give a brief survey of the main results of % mely, Theorems 16
and 19.

The concept of nonforking has been systemati
of the study of model-theoretical prope

in [8] in the framework
ies. To study the abstract

property of independence due to the work ned out to be enough to work
in the class of simple theories, whi ecessarily contain stable theories.
In connection w1th this fact, it seem interesting to adapt the concept of a

nsider this concept in a more general context of
y model of an arbitrary signature. Theorem 16
nsson analog of the Kim-Pillay theorem was
e concept of nonforking, defined axiomatically on
of the cosemanticness class of a fixed spectrum,
e the relation of Jonsson system of independence on

to a more general situation and
the perfect Jonsson spectru
demonstrates exactly this, i

subsets of the s t
made it poss1b1e

e uncountable categoricity of some hereditary class of the Robinson
pec . There are well-known results for complete theories related to uncountable
egoricity, for example:

eorem 1 (Erimbetov, Lachlan, Baldwin [10], p. 529). For a countable complete
ory T to be a w-categorical, it is necessary and sufficient that T have a non-
wo-cardinal strongly minimal formula o(x, a).

Theorem 2 (Morley [11], p. 152). A theory T if and only if it is a wy-categorical
if any of its countable models has a simple proper elementary extension.

In this paper, we have proved Theorem 19, which naturally relates to both
of the above Theorems 1, 2 through the necessary conditions of these theorems
and generalizes them using the notion of an algebraically prime model extension,
moreover, since the central type corresponds to the center of the enriched Jonsson
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theory under consideration (and the center is a complete theory), we obtain a
refinement of Theorem 1 within the framework of studying uncountably categorical
Robinson theories.

It should be also noted that in this article in an implicit form there is a formed
open question about the description of hereditary Jonsson theories.

All of the above considerations led us to write this article.
2. BASIC CONCEPTS AND RESULTS CONCERNING JONSSON THEORIES
Let us give well-known definitions of concepts and results related to ? SO!
theories, which are necessary for study independence and simplicity within ‘ghe

framework of Jonssonness. Statements that are given without proof i h
link where these statements were obtained.

Definition 1 ([10], p. 80). A theory T is called a Jonsson theory i

(1) T has an infinite model;
(2) T is inductive, i.e. T is equivalent to the set of Vzse
(3) T has the joint embedding property (JEP), i.e. any
theory T are isomorphically embedded in fom
(4) T has the amalgamation property (AP), i.e.
that f1: A— B, foa: A — C are isomo
and isomorphic embeddings g :

es
s A, B of the
of the theory T ;
A, B, C =T such
e dings, there are D =T
» such that g1 f1 = g2 f2.

such as groups, Abelian groups, ras, linear orders, fields of fixed
characteristic, and polygons.

Definition 2 ([12], p. 529). Let k > w. A model M of the theory T is called k-
universal for T, if each model of the theory T of cardinality strictly less than x is
isomorphically embeddable

Definition 3 ([12], p.
homogeneous fo ]

et K > w. A model M of the theory T is called k-
two models A and Ay of the theory T, which are
submodels of M, is strictly less than k, and isomorphism f: A — Ay,
for each exte model A, that is a submodel of M and the model of the
theory T of ity 15 strictly less than k there exists an extension B of the
is_a submodel of M, and the isomorphism g : B — By, continuing

r T inality x, where Kk > w.

3 ([12], p. 529). Every Jonsson theory T has a k™ -homogeneous-universal
del of cardinality 2%. Conversely, if T is inductive, has an infinite model, and
s a wt-homogeneous-universal model, then T is a Jonsson theory.

Theorem 4 ([12], p. 529). Let T be a Jonsson theory. Two models A and B,
k-homogeneous-universal for T, are elementarily equivalent.

Definition 4 ([12], p. 529). The semantic model Cr of the Jonsson theory T is
called the w™-homogeneous-universal model of the theory T.

For any Jonsson theory, a semantic model always exists, so it plays an important
role as a semantic invariant.
From the definition of the semantic model it follows that:
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Proposition 1 ([13], p. 160). Any two semantic models of the Jonsson theory T
are elementarily equivalent to each other.

Lemma 1 ([13], p. 162). The semantic model Cr of the Jonsson theory T is T-
existentially closed.

Definition 5 ([13], p. 161). The semantic completion (center) of the Jonsson theory
T is called the elementary theory T of the semantic model Cr of the theory T, i.e,
T* = Th(Cr). *

Definition 6 ([13], p. 162). A Jonsson theory T is called perfect if every se
model of T is a saturated model of T™.

tic

Theorem 5. Let T be an arbitrary Jonsson theory, then the follow 110N s
are equivalent:
1) the theory T is perfect;
2) T* is a model companion of the theory T.
Proof. Follows from Theorem 2.3.6 [13]. . O
Let us denote by Er the class of all existentially €lese els of the theory T.
Theorem 6 ([13], p. 162). If the Jonsson theor; erfect, then Er = Mod(T™),

where T* = Th(Cr).

Proposition 2 ([10], p. 368). If &
theory T is embedded in some existe

Definition 7 (T.G. Mustafin [13], p. 1 e say that the Jonsson theory Ty is
cosemantic to the Jonsson theory To (11 < T3), if Cp, = Cr,, where Cr, is the
semantic model of the theorgpT;, 1,2,

15 uctive, then any model of the
model of the theory T'.

Let T be some Jons ory of fixed signature o and Mod(T") be the class of
all models of theytheo nsider an arbitrary model A from Mod(T). Let us
call the Jonsson tr odel A the set:

JSp(A) = onsson theory in the language o and A € Mod(T')}.

It is eas t the cosemantic relation on a set of theories is an equivalence
relagion. The consider the JSp(A) /s factor set of the Jonsson spectrum
of thi with respect to <.

. Let A and B be models of the same signature. We say that the model
JSp-eessemantic to the model B (A > B), if
P

JSp(A)/sa = JSP(B) /s

3. SPECIAL FORKING AND INDEPENDENCE RELATIONS FOR FRAGMENTS OF
JONSSON SETS

One of the most important concepts in the modern Model Theory is the concept
of forking. With the help of this concept, we can estimate the dependence of the
properties of elements on each other on the first-order language. It should be noted
that this concept was introduced by S. Shelah [8] to solve a very important problem
on the spectrum of an arbitrary complete theory. Over time, the specialist from
Model Theory, having appreciated the depth and significance of the concept of
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forking, began to look for new approaches to its simpler explanation. One of the well-
known sources in this direction is the famous work of the French mathematicians
B. Poizat and D. Lascar [14], in which the concept of forking was redefined within
some order. Later, other mathematicians noticed that it is possible to consider the
abstract properties of the independence of the model elements from each other

and relate this to the first-order properties of the types of these elements for
nonforking. In particular, as an example, we can cite the following monograph
by D. Baldwin [15], where he considered the axiom system that defines the %bs\
property of independence.

The central concept of this section is the concept of a fragment of a Jonsson
set, which was defined by A.R. Yeshkeyev in the paper [16], and some o

theoretical properties were considered in the papers [17], [18], [19].
Definition 9 ([16], p. 38). A set X is called a Jonsson set in the theory T, if it
satisfies the following properties:
(1) X is a definable subset of C, where Cr is a semantg of the theory T';
(2) dcl(X) is a carrier of existentially closed submod ere del(X ) is
definable closure of X. L 4
As can be seen from the definition, the conce &sson set is in very good
agreement with the concept of a basis for a li ce’Note that linear spaces
are a special case of modules, and the th odules is Jonsson theory.
Consider a countable language existential sentences perfect

model of the semantic model Cr,
where dcl(X) = M. Then let r(X), where Fr(X) is the Jonsson
fragment of the Jonsson set X.

Since the concept of forkifigyi
natural desire to study itsf

it). For this purpose, y

nt points of view (especially if we want to use
ibe the forking axiomatically. The classical concept
[8], we recall it.

. The set of formulas {p(Z,a;) : ¢ < k} = p is called
e natural number k if every finite subset p of cardinality k is

F=037)(e(Z,ai,) A A (T, a4,))

nition 11 ([8], p. 85). The partial type p is divisible over the set relative to
€ wif there exist a formula o(Z,a) and the sequence (a; : i € w), such that:

(1) pko(z,a);

(2) tp(a/A) = tp(a;/A) for all i;

(3) {p(z,a;) : i € w} is k-inconsistent.
p is divisible over A, if p is divisible over A relative to some k.
Definition 12 ([8], p. 85). The type p (not necessarily complete) fork over A in T
if there are formulas {p(Z,a;) : i € w}, such that:

(1) P Vocicy #i(,a:);
(2) @i(Z,a;) is divisible over A for each 1.
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Let B C A, p € S,(A). Then the type p is called definable over B if for each
formula ¢(Z,?) of the language L(Z) there is a tuple b € B and a formula (v, ) €
L, such that Va € A ¢(Z,a) € p if and only if |= 1(a,b). The formula (7, b) from
L(B) in this case is called @-defining type p by the formula. A type p is called
completely definable over B if there exist C = T, ¢ € S,(C), such that A C C,
p=gq | A, qis defined over B. If A =T, p € S,,(A) and p define over B, where
B C A, then the mapping « : L(Z) — L(B), putting each the formula ¢(Z, )
from L(Z) accordance with ¢-defining type p the formula is called schema ov ,
defining p. Obviously, if d and d’ are schemas over B, defining the same type,qt
E d(¢) + d'(p) for any formula ¢ € L(Z). If A = T, d is a schema that d&

p € S,(A), AC Ay, then {p(z,a1)|a1 € A1,p € L(Z)}, = d(p)(ar) is ca
p over Aj.
Let T be a Jonsson theory, S7(X) be the set of all existential c lete es
over X consistent with 7" for every finite n.

Definition 13 ([13], p. 201). We say that a Jonsson theor JA-stable if for
any T-existentially closed model A, for any subset X of the ‘set that | X| < A
it follows that |S7(X)| < . The Jonsson theoryql isgcalled a J-stable if it is a

J-A-stable for some .
In connection with the above definition, we e following result:

Theorem 7 ([3], p. 868). Let T be a
sentences, A > w. Then the followi
(1) T is a J-\-stable;
(2) T* is a A-stable, where T™* is t

onsson theory complete for 3-
equivalent:

of Jonsson theory T.

For complete theories, an axi@matic approach was already known for defining
the notion of nonforking, f ample, in [20]. In this paper, we will also approach
the adaptation of the coneept o sson nonforking by the axiomatic way.

Let A be the class g onsson subsets of the J-saturated semantic model Cr
(i.e., any 1-3-typ any subset of the given model is realized in it) of some
Jonsson theory T, the“elass of all existential types (not necessarily complete).

Let JNF C e binary relation. Let us write in the form of axioms
some conditi sed on JNF (Jonsson nonforking).
jomm 1. € JNF and f : A — B are isomorphic embeddings, then

€ JNF and q C p, then (q,A) € JNF.
v B C C and p € S/(C), then (p,A) € JNF if and only if
) NF and (p|B,A) € JNF.
m 4. If AC B, dom(p) C B and (p, A) € JNF, then there exist ¢ € S/(B)

h that p C g and (¢, A) € JNF.

Aziom 5. There is a cardinal u, such that if A C B C C, p € S/(B) and
(p,A) € JNF, then |{qg € S/(C) :p C q,(q,A) € INF}| < pu.

Aziom 6. There is a cardinal s, such that for any p € P and every A € A, if
(p, A) € JNF, then there is Ay C A, such that |A;| < » and (p, A1) € JNF.

Aziom 7. If p € S7(A), then (p, A) € JNF.

Let Fr(X) be a fragment of some Jonsson set X, where X is a subset of the
semantic model Cr of some Jonsson theory 7'. Then we have the following result.

Theorem 8. The following conditions are equivalent:
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(1) the relation JNF satisfies axioms 1-7 with respect to the fragment Fr(X);

(2) Fr(X)* is a stable and for allp e P, Ac A (p,A) € JNF < p does not
fork over A (in the classical sense of S. Shelah [8]), where Fr(X)* is the
center of the fragment Fr(X).

The following well-known facts will be used in the proof of the theorem:

Fact 1 (Ramsey’s theorem [21], p. 173). Let I be an infinite set, n < w and let
[I]™ be the family of all subsets of the set I, which consist exactly of n elemént
If [I]" = AgU...UAk_1, k <wand A;NA; =0 for i < j <k, then thefe i
infinite set J C I such that [J]™ C A; for some i < k.

Fact 2 (Lemma 14.9 [22], p. 73). Let T be a stable theory, M be a ra
model of cardinality u*, and the types p1,ps € S(M) does not fork ov n
if pp | A = py | A, then there exists an elementary monomorp , & is
identical on A such that f(dy) ~ do, where d;, dy are schemas that ne p; and
po respectively.

Proof of Theorem 8.

(1) = (2). Let A = 271TI'"* where \, p and p are cardina esponding to
Axioms 1-7. Obviously, that \» = \. Let |A| = A\. 4 p /(4), then, by Axiom 7,
(p,A) € JNF, and by Axiom 6, there exists A, s that |A,| < p and
(p,Ap) € JNF. Then by Axiom 3 (p | A,, A, Denote p [ Ay, by g(p).
Then, according to Axiom 5, |{q € S7(A): . Hence,

1ST(A) < {g(p) :p € ST(A)} - < |ACQ 2P fy < XN X X=X =\

that Fr(X) is a Jonsson theory,
and since F'r(X) is a J-A-stable, this t s a saturated model in any regular
cardinality, therefore Fr(X) is afperfect Jonsson theory. Then, according to Theo-
rem 7, we conclude that Fr(X)*\s a A-stable.

Let (p,A) € JNF. Let _us hat p does not fork over A. Let B = dom(p).
q € S7(B) such that p C q and (¢, A) € JNF. Let
er A (then p does not fork over A by Axiom 2). Let’s
the definition of forking and perfectness of the theory

us prove that ¢ d
assume the opposi
Fr(X), there i
each formul ivisible over A. Let C' = B U D, D be the set of constants
ingfi ne of the formulas from . According to Axiom 4, there exists
at ¢ C qo and (g, A) € JNF. Obviously, g0 - V{p : p € T},
»(Z,a) € go NX. Using Fact 1, the compactness theorem and the
©(Z,a) over A, we can show the existence of the sequence (a, : @ <
lementary monomorphisms f,, o < p*, identical on A so that ag = a,
(@), where @ < p* and {o(Z,a,) : @ < pt} k is inconsistent for some
w.
Let E = CU{@Gy : a < pt} and g0 = fa(qo), where 0 < a < pt. According
o Axiom 1, (ga,A) € JNF, where a < p*. According to Axiom 4, there exist
q’, € S7(E) such that q, C ¢/, and (¢/,, A) € JNF. It is clear that ¢(7,a,) € ¢/, and
q € ¢l,, where a < u. We have |{¢, : a < uT}| = p*, since {p(Z,a,) : a« < put} k
is inconsistent. We have obtained a contradiction with Axiom 5. Therefore, ¢ does
not fork over A. Thus, we have that if (p, A) € JNF, then p does not fork over A.
Let’s prove it in the opposite direction. Let p does not fork over A. Since the
theory F'r(X) is perfect, then Fr(X)* is model complete (Theorem 5), and we
only need to work with existential types and consider J-saturated existential closed
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models of the theory F'r(X). We need to prove that (p,A) € JNF. Let M D A,
M D dom(p), |[M| > 27ITI'"* and M be F-saturated model of the theory Fr(X)*,
t € S/ (M), p Ct, t does not fork over A. By Axiom 7 (¢ | A,A) € JNF and by
Axiom 5 there exists ¢ € S7(M) such that ¢ D ¢ | A and (g, A) € JNF. As shown
above, (¢, A) € JNF implies that ¢ does not fork over A. According to Fact 2,
there exists an automorphism f of the model M identity on A such that ¢t = f(q).
Then by Axiom 1 (¢,A) € JNF, and by Axiom 2 (p, A) € JNF. Therefore, the
implication (1) = (2) is proved.
(2) = (1). It is easy to see that this follows from the proof of Theorem 1&1 iXe

[23] with a generalization of the corresponding concepts to Jonsson analogs.

Consider gain of Lemma 19.7 from [23].

Let T be some Jonsson theory, M, N be existentially closed submo e
semantic model Cr of T. If A C M NN, p € S7(M), ¢ € S7(N¥ then pes ¢
means that for any existential formula ¢(Z,y) € L(A) from thegfact that there is
a tuple m € M and ¢(Z,m) € p it follows that there is a tu such that

¢(Z,n) € ¢; p ~4 g means that p >4 ¢ and ¢ >4 p.

%0
pl* = {q:IN =T,q € 57 (N), q

It is easy to see that the relation >4 induces a si rr on between classes,
which is a partial ordering relation. If A = 0, thedindex A for >4 and ~4
will be omitted. Each equivalence class i ined uniquely by the set of

(A) be called representable in
p € ST(M) if there is a tuple m € M Fo(z,m).
Thus, it is obvious that the namber of equivalence classes in ~ 4 is at most, than
9IL(A)| _ olLI-|A|
Equivalence classes with o ~ 4 will be denoted by 4. If p € S/(A), then
2, denotes a partially se
,p1 € S7(M),p C p1,p1 € M} >).

M), M € Er, A be a Jonsson set, and M C A. The
of type p to A is called an heir of p if for all p(x,v,) €
A™ such that q & o(x,a), there is a tuple m € M™ such that

Definition 15.
extension q

b

3 N and p € S7(M), then the heirs of the type p on N are exactly
(N) such that p ~p/ g.
We e the following technical lemmas.

a 2. There exists a mazimum element in 2.

oof. It suffices to prove that (2, satisfies the condition of Zorn’s lemma. Let
& i €1} bealinear chainin Q,, J; ={j € I:& > &}, i € I. It is clear that the
set {J; : i € I} is centered, that is, the intersection of any finite number of terms is
non-empty. Let D be an ultrafilter over I, containing {.J; : i € I'}; M, p; € S7(M)
such that M D A, p; € &, i € I. Let p' € S/(M) be such that for every tuple
m of elements from M, for every existential formula ¢(Z, §) of the language L(A)
o(Z,m) € p' if and only if {i € I : p(Z,m) € p;} € D. Obviously, that p C p/.
Let us show that p’ > p; for any i € I. Indeed, let ©(Z,§) be some existential
formula of the language L(A), m € M, o(z,m) € p'. Then K = {j € I : p(T,m) €
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pj} € D,but J; € D,so KNJ;, € D. Let j € KN J;. It is clear that ¢(Z,m) € p;.
But j € J;, whence p; >4 p;, therefore, o(Z, ) is representable in p;. Thus p’ >4 p;,
i € I. Tt follows that [p/]4 >4 &, i € I. O

Lemma 3. If T is a J-stable, existentially complete Jonsson theory, p € S’ (M),
M C B, p' € S7(B) is the heir of type p, then p ~yr p'.

Proof. Obviously, p > p’. Let ©(Z, ) be an existential formula of the languag
L(M),be B, o(z,b) €p', p(&,b) = ¢(z,b,m1), m1 € M. And let d be thegch
defining p (and p’). Then »(Z,b) € p' = & (dy)(0"m1) = | Fz(dy) (7

M = 3z(dy)(2"m;), therefore there exists b’ € M such that M |= (di _T/\
therefore ¥(z,b',m1) € p = ©(Z,b') € p.

Lemma 4. If T is a J-stable, existentially complete Jonsson theofyy p € S&(M),
M C B, qe S/(B), pC qandp~u q, then q is the heir of p.

la 0(z,7) =

(p(z,9) + (de)(y)) is not representable in p. Since (Z,7) is not

representable in g. Then for any b € B -0(z,b) cly. lows that for any b € B
©(Z,b) € ¢ if and only if = (dp)(b). \ O
Lemma 5. f AC MNN, pe S/ (M), qc¢€ =gq | A and p, q does

not fork over A, then p ~4 q.

Proof. Let M UN C M, M be
Then there exists a f automorphism idengical on A and f(p') = ¢/, where p/,
¢ are the heirs of p, ¢ over M respec hen, applying Lemma 2, we have
p~ump ~aq ~n g But ~p ymplies ~ 4. Therefore, p ~4 q. O

odel T of cardinality > 2/L(AI

Lemma 6. If T is a J-sta
then €, has a unique m

entially complete Jonsson theory, p € S7(A),
il (i.e"largest) element.

rary model of T, p’ be arbitrary not forking over A
etus’show that p’ > 4 ¢ for any ¢ D p, where ¢ is a complete

Proof. Let M D
extension of p ove

type over so e Let ¢ = ¢, and M; be a model containing A such that
t(My, N U,c) fork over A. It is obvious that ¢(M;, A U ¢) does not fork
overpd. Accor the symmetry property of forking, ¢(¢, M1 U A) (= t(¢, My))

does er A (and contains p). By Lemma 4, p’ ~4 t(¢, My).
show that ¢(¢, M1 U N) does not fork over AU N (= N). Assume
at this isTot the case. Then there is a tuple m € M; such that t(¢,m U N) forks
N Jwhence t(m, N U¢) forks over N. But ¢(m, N U¢) does not fork over A and

en‘more so N. We got a contradiction.

So, t(¢, M1 U N) does not fork over N. By Lemma 2, we have t(¢, My UN) >4
¢,N) = q. Then p' ~4 t(¢,M;) >4 t(¢, My U N) >4 q. Therefore, [p']* is the
largest element of 2. O

Let denote by 37(p) the largest element of .
Let us introduce the following relation JNFLP (Jonsson nonforking according to
Lascar-Poizat) on P x A.

Definition 16. Let T be a J-stable, existentially complete Jonsson theory.
(1) If pe S7(B), AC B, then (p,A) € JNFLP < B’ (p) = ' (p | A).
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(2) If p is an arbitrary emistential type, then (p, A) € JNFLP < there is a
type p' € ST(AUdom(p)), that p C p’ and (p', A) € JNFLP.

Theorem 9. In J-stable existentially complete Jonsson theory, the relation JNFLP
satisfies Azioms 1-7.

Proof. Axioms 1, 2, 3, 4, 7 are trivial to check.
Axiom 6 holds for s = |L|*. Suppose the opposite. Let p € S7(A) and for any
Ay C A, if |Ay| < », then (p, A1) ¢ JNFLP. Obviously, |A| > s = |L|*
is a sequence (A, : @ < |L|T) such that |A4,| < |L|, A, C Ag for a < <
d

and (p | Aat1,40) € JNFLP. Let M D |JA, be an arbitrary existentially ¢

submodel of the semantic model of T of cardinality |T|, po 2 p | A
Pa € S7(M) and [p,]“« is the largest element in Q4. Then ({pa ; >
is a strictly decreasing sequence. Hence, there are formulas ¢q (Z, §o ) LIt
such that ¢, (Z, 7. ) representable in p,, but not representabl 11 is clear
that for @ # v va(Z,9a) # ¢+(Z,Yy), since there is no set rdinality > |L]
formulas in the language L. Contradiction.

Axiom 5 holds for pu = (2|T|)+. Indeed, let % c4S< (p,A) € JNFLP,
A C B C C. According to Axiom 6, there is Ag that |Ag| < |LJ,
(p, Ag) € INFLP.

Case 1: Let C be an existentially clo
T, C ': T. Let AO C M0<3C'. If p’ S
(p',Ao) € JNFLP. Hence, (p', Mo, € JN
There are no more such types than

Case 2: C' £ T. Then we take a mo

{a € S7(Cp € a&l(q, A) € INFLPY| <

a

)

the semantic model M of
, (p,B) € JNFLP, then
nce p’ is the heir of p’ | M.

< g e S @Ry pC q&(q, A) € INFLP}| < 271,
|
The following gain of Theorem 19.8 [23] and is the main result of
this section.
Theorem 1 egtheory Fr(X) is a J-stable, then the concepts JNF and JNFLP
coincide.

from Theorem 8 and Theorem 9. O

a fixed fragment of some Jonsson subset of the semantic model of
-stable existentially complete Jonsson theory, the equivalence of binary
relati JNF and JNFLP is proved. Moreover, for JNF' in this class of theories, a
re detailed version of Theorem 10 from [24] was obtained.
The obtained results with these binary relations provide an additional opportunity
o characterize the behavior of existential types in the study of the considered
fragment of the Jonsson subset of the given Jonsson theory’s semantic model.

4. STRONGLY MINIMAL SETS ON THE PREGEOMETRY OF THE SEMANTIC MODEL
OF A FIXED JONSSON THEORY

The results of this section are natural generalizations of classical results on the
properties of the algebraic closure within the framework of the study of Jonsson
strongly minimal sets [26].
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One of the interesting advances in the modern Model Theory research is the
realization of the local properties of the geometry of strongly minimal sets. In [25],
E. Hrushovski obtained remarkable results using the geometric theory of stability,
which significantly influenced the development of methods and ideas for studying
the global properties of structures. These model-theoretical features play an impor-

tant role in Hrushovski’s proof of the Mordell-Lang hypothesis for field functions.
The Model Theory apparatus associated with the notion of strongly minimality
is fairly well developed for complete theories. Therefore, transferring from the a
apparatus the basic concepts associated with the concept of strongly minimali
fixed formula subsets of the semantic model of Jonsson theory, we set the con n

that the semantic model is saturated in its power, i.e. the considered théory mu

be perfect.
This section is devoted to the study of the basic concepts of

Jonsson sets. The minimum structures and, acc
geometries of the minimum structures are determ&e .
independence, and basis in Jonsson strongly minimal
are considered.

Strongly minimal sets and their prop

minimal arbitrary subsets of the s

The notion of strong minimality, ts and theories, played a decisive
role in obtaining a result on the descrip uncountably categorical theories.

It is clear from the definition of Jonsson sets that they are arranged very simply
in the sense of the Morley rank. It turns out that elements from the set-theoretic
difference (holes) of the the set have rank 0, i.e. they are all algebraic.

The second point of ulness of the definition of the Jonsson set is that by
closing a given s e existentially closed models. This, in turn, enables
us to study the ink for an arbitrary fragment of the considersd set.
Morley’ i inal-valued estimate for the independence of the elements
he fragment. For complete theories, one of the conditions for
definition of the Morley’s rank is saturation. In the case of

of'some fixed Jonsson theory.

is required. Thus, when working with Jonsson theories, the concept
ce can arrive at both through nonforking and Morley’s rank. To study
ior of the elements of a hole in the case of Jonsson sets, one can always
the V3-consequences, which are true in the above-mentioned closures of
Jonsson set. In view of the above, it follows that the considered set of sentences
1l be a Jonsson theory. Within the framework of the newly introduced definitions,
strongly minimal Jonsson sets were considered and described. To transfer from the
apparatus of Model Theory, developed for complete theories, the basic concepts
associated with the concept of strongly minimality for fixed formula subsets of the
semantic model of the above Jonsson theory, we need the semantic model to be
saturated in its power, i.e. the theory in question must be perfect.
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Recall that Jonsson theory has a semantic model C of sufficiently large cardinality.
The semantic models of a perfect Jonsson theory are uniquely determined by their
cardinality. We will consider not all subsets of C, but only Jonsson subsets.

Let us define the Morley’s rank for existentially definable subsets of the semantic
model.

We want to assign to each Jonsson subset of X of the semantic model an ordinal
(or perhaps —1 or oo) — its Morley’s rank, denoted by M R.

Let T be a fragment of some Jonsson set, and it is a perfect Jonsson theo
be a semantic model, X be a definable set of C.

Definition 17. MR(X) > 0 if and only if X is nonempty; MR(X) > N
only if MR(X) > « for all o < X (X is limit ordinal); MR(X) > a+1
if in X there is an infinite family X; of pairwise disjoint 3-definable subsets such
that M R(X;) > « for all i.

Then Morley’s rank of the set X is M R(X) = sup{a | M
Moreover, we will assume that M R(X) = —1 and M R(
for all v (in the latter case, we say that X has no rank).

Definition 18. The Morley’s degree M D(X) of a JK , having Morley’s

o
i

[R(X) > a

rank o, is the mazimum length d of its decomposi X7 U...UX,, into disjoint
existentially definable subsets of rank «.

ially definable subset is simply

In the case of rank 0, the degree of an
i able subset has no rank, then

the number of its elements. If an tential
its Morley’s degree is not defined eit

Consider Jonsson minimal sets. Note
1 and degree 1.

We will everywhere assume that the language L is countable. The considered
theory T is an existentia ete perfect Jonsson theory in the countable
language L.

Consider an e 1¢

If K is an algebraica
closed subfiel

The follo

strongly minimal set is a set of rank

gebraic closure in Jonsson strongly minimal theories.
glosed field and A C K, then acl(A) is an algebraically
ra y A.
erties of the Jonsson algebraic closure are valid for any subset
D of the gem del of the Jonsson theory T

L e some existentially closed submodel of the semantic model for a fixed
the guage L, and D C M be a Jonsson strongly minimal set.

™ be an infinite A-definable set, where A C L is the set of existential

f a given language.

ion 19. We say that D is Jonsson minimal in M if for any A-definable
C D eitherY is finite or D\Y is finite.

If ¢(v,a) is a formula that defines D, then we can say that ¢(v, @) is also Jonsson
minimal.

Definition 20. We say that D and ¢ are Jonsson strongly minimal if ¢ is Jonsson
minimal in any existentially closed extension N from M.

Definition 21. We say that a theory T is Jonsson strongly minimal if the formula
v = v is Jonsson strongly minimal (that is, if M € ModEr, then M is Jonsson
strongly minimal)
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Consider aclp is an algebraic closure restricted to D. Recall that b is Jonsson
algebraic over A if there is a formula ¢(7,a) € A with @ € A such that ¢(M,a) is
finite.

For A C D let aclp(A) = {b € D : b be a Jonsson algebraic over A}.

The following well-known properties of the algebraic closure [9] are also valid
for the Jonsson algebraic closure of any subset D of the semantic model of the
theory T'.

Lemma 7. (1) acl(acl(A)) = acl(A) D A. 2™
(2) If AC B, then acl(A) C acl(B).
(3) If a € acl(A), then a € acl(Ag) for some finite Ay C A.

Lemma 8 (Exchange). Suppose that D C M is Jonsson strongly ming
and a,b € D. If a € acl(AU{b})\acl(A), then b € acl(AU {a}).

The notion of independence, which generalizes linear in
spaces, as well as in algebraically closed fields, algebraic inde
defined in a Jonsson strongly minimal set.

Let M € Mod Er, and D be a Jonsson stronglydmini

Definition 22. We say that A C D is Jonsson_in
for all a € A. If C C D, we say that A is Ji
acl(C' U (A\{a})) for all a € A.

Definition 23. We say that A is isfor Y C D if ACY is Jonsson
independent and acl(A) = acl(Y).

ndent if a ¢ acl(A\{a}))
independent over C if a ¢

It is clear that any maximal Jonsson 1 ndent subset of Y is a Jonsson basis

for Y.
Definition 24. IfY C D, onsson dimension of the setY is the cardinality

of the Jomsson basis fon
@ sson dimension of Y.

Let JdimY d

Note that if D™ coutttable, then J — dim(D) =| D |, since the language is
countable an ) untable for any countable A C D.

For Jonss ngly minimal theories, each model is determined up to isomorphism

by its own Jo mension.

et T' be Jonsson strongly minimal theory. If M, N € ModEr, then
d only if Jdim(M) = J dim(N).

ilar to the proof of Theorem 6.1.11 from [26]. O

To adapt the uncountable categoricity within the framework of the study of

nsson theory, the concept of the central type was used. This concept is needed
or additional information about Jonsson theory, and also technically the fact was
used that the central type, after replacing a variable with a constant, turned into a
theory, moreover, a complete one, and it was closely related to the original Jonsson
theory in the sense that the class of existentially closed models of this new theory
did not differ from the old one. It is well known from the work [2] that enrichment
of a language with a unary predicate and a constant preserves the definability
of the type in the enrichment, i.e. the enrichments discussed in this article are
permissible. But at the same time, we know about the existence of a counterexample
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of Jonsson theory, which, when enriched with a unary predicate, loses the concept
of Jonssonness. This example is the theory of fields of characteristic 0. It is well
known that the field theory of characteristic 0 is not locally modular. In this regard,
in order to exclude in advance such situations as the case of an example of field
theory that are Jonsson teories, we assume that the operator cl, which defines the

pregeometry on Jonsson theories, will be the algebraic closure operator, which is
equal to the definable closure operator, i.e. ¢l = acl = del. An example of a Jonsson
theory in which dcl = acl is an example of vector spaces. In particular, éo
operator cl, which defines the pregeometry in the language of the signatur
field theory of characteristic 0, it is true that ¢/ = acl, but ¢l # dcl. Sinc e
main result of this section on uncountable categoricity is proved for Jons§on stro
minimality of central type, this assumption is correct because str imal
theories always admit acl as an operator cl.

For any automorphism of the semantic model, for any Jon subsets of the
semantic model, the following result is true.

Theorem 12. Let T be Jonsson theory, X be a Jonsson\su the semantic
model C' of the theory T, a € C. Then a € acl(X) & arejat most finitely many

elements f(a) when f runs through the automorphi\‘ fix X pointwise.
¢

Proof. Take a € acl(X). Let ¢(v) be L(X)-for at a € o(C) and ¢(C)
is finite. For any automorphism f of the medel'€ fixingpX pointwise, f(a) € ¢(C).
Accordingly, the images of the element a u utomorphisms of C' that fix X
pointwise form a finite set.

Conversely, let a ¢ acl(X), so for a mula p(v), if a € p(C), then ¢(C)
is infinite. Let ay, ..., a, be different ele realizing tp(a/X). For each formula
p(v) € tp(a/X) there is some ent b € p(C), b # ag, ..., an. Since tp(a/X) is
closed under finite conjunctien, tp(a/X) U {—(v = a;): i < n} consistent and can
be expanded to completedype U{ag, ..., an} so that any element a, 1 that
implements this type gatisfiegythe condition a,+1 = tp(a/X), ant1 # ag, ..., Gn.
Thus, there are i e realizations of type tp(a/X) in C, and each of them
is the image of a some automorphism C' fixing X pointwise.

Similar re s that a € del(X) < f(a) = a for every automorphism f
of the model xes X pointwise. O

hat the definable closure dcl(A) of the Jonsson set A, that is,
ents definable over A coincides with the set of elements invariant
omorphisms over A.
12 implies that an element b is algebraic over A if and only if it has

Further, using Jonsson strongly minimal sets, we consider some properties of the

binatorial geometry of the algebraic closure.

It is well known that in the proof of Morley’s uncountable categoricity theorem,
the properties of the algebraic closure on strongly minimal sets are essentially used.
Using Jonsson strongly minimal sets, we study the combinatorial geometries of the
algebraic closure.

Let X be a subset of the semantic model of some fixed Jonsson theory and let
cl: P(X) — P(X) be an operator on the set of subsets X. We say that (X, cl) is a
J-pregeometry if the following conditions are satisfied:

1)if AC X, then A C cl(A) and cl(cl(A)) = cl(A);
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2) it AC B C X, then cl(A) C cl(B);

3) (exchange) A C X, a,b € X and a € cl(A U {b}), then a € cl(A), b €
(AU {a});

4) (finite character) If A C X and a € cl(A), then there is a finite A9 C A such
that a € cl(Ao).

We say that A C X is closed if cl(A) = A.
Note (by Theorem 12 and Lemma 7) that if D is Jonsson strongly minimal, one
can define a Jonsson pregeometry by defining cl(A) = acl(A) N D for A C D

generalize basic ideas about independence and dimension from Jonsson ar g
minimal sets to an arbitrary Jonsson pregeometries.

Definition 25. If (X,cl) is a Jonsson pregeometry, we say that A
independent if a ¢ cl(A\ {a}) for all a € A, and B is a J-basis for, ¥ i
J-independent and Y C acl(B).

If AC X, we also consider the localization cl4(B) = cl(A
If (X,cl) is a J-pregeometry, then we say that ¥ C X ssom independent
over A, if Y is Jonsson independent in (X, cla).

dim(Y/A) is the dimension of Y in the localizatiq dim(Y/A) is called
the dimension of Y over A. \
a

Definition 26. We say that a J-pregeometr , cl ) -geometry if cl(D) = @
and cl({z}) = {z} for any z € X.
We distinguish some properties he pre etry that will play an important

role.

Definition 27. Let (X, cl) be
c(A) = U c({a}) for any A C

acA
dimensional closed sets 4

Jdim(AN B).
(X, cl) is loca ot

J-pregeometry. We say that (X, cl) is trivial if
We say that (X, cl) is modular if, for any finite-

olds Jdim(A U B) = Jdim(A) + Jdim(B) —

X, cl,) is modular for some a € X.

Theorem 13 be a J-pregeometry. The following conditions are equi-
valent:

ular;
1s closed and non-empty, b € X, x € cl(A,b), then there exists
ch that x € cl(a,b);
B C X are closed and non-empty, x € cl(A, B), then there exist a € A
d b € B such that x € cl(a,b).

. Similarly to the proof of Lemma 8.1.13 from [26]. O

,C

5. JONSSON INDEPENDENCE FOR JSp(A)

In Model Theory, one of the modern approaches to studying the properties of
elements of the considered complete stable theory’s models is forking. The concept
of nonforking is analogous of the concept of independence between elements, and
also, respectively, between the considered formula subsets of a fixed model. The
notion of independence leads to geometric combinatorial connections between the
considered formula subsets, which allows one to obtain the necessary results in
specific posed model-theoretic problems. Within the framework of the study of
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complete theories, the concept of a simple theory was defined, and this concept
significantly allowed the use of the properties of nonforking in wide classes of
theories than stable theories. So, for example, the following theorem shows that
in any simple theory a good system of independence necessarily arises from forking.

Theorem 14 (Kim-Pillay [9], p. 233). Let T be a simple theory, I be a good
independence system of the theory T. Then, for each tuple a € Q and A C B
of small subsets of Q, (a, B, A) € I if and only if tp(a/B) does not fork ovz

concept of stability, simplicity of a theory and nonforking of types, and, a
independence to a class of theories that, generally speaking, are e,
and thus this approach is useful in the study of inductive classes lge e
theory which, generally speaking, are not complete, but satisfy the na 1 algebraic
conditions of joint embedding and amalgam.

In this section, a point of view is given that makes it possible to transf&
in

Let T be an arbitrary Jonsson theory of the 51gnatur o be the class of
all existentially closed models of the theory T. Let ; then Ejp) =
UAE[T] En.

Let us call the factor spectrum JSp(A)/x homog or any [ [T)2 €

JSp(A) /s it follows that Eiry, N By, = 2.

Let X C Cr, where C1 be the semantig m con51dered Jonsson theory
T. We say that the set X is a V-cl-subset o 7 if X satisfies the following
conditions:

(1) X is a V-definable set (this me
L, whose solution in Cy, is the , where V is a kind of formula, for
example 3,V,v3);
(2) ¢ =M, M ¢ ere cl is some closure operator that defines a
J geometry ove ense of Definition 26 (for example, ¢/ = acl or
= ddl).
Let T be a J ) be the set of all V-complete n-types over
X, which con for every ﬁmte n. We say that a Jonsson theory T is
a V A- stable ery 1-existentially closed model of A, for every subset X of

the set ct that |X| < A it follows that [SV(X)| < A\. We will call a
Jon eory able if it is a V-A-stable for some A.

JSp )/ is called a V-stable if each theory A € [T] is V-stable.

A) /4, X be the class of all V-cl-subsets of the semantic model Cizy

the class of all V-types (not necessarily complete), let JVNF (Jonsson
rking) C P x X be some binary relation. Let us write in the form of axioms
e conditions imposed on JYNF.
Aziom 1. If (p,X) € JVNF, f : X — Y are isomorphic embeddings, then
), (X)) € JVNF.
Aziom 2.If (p, X) € JVNF and ¢ C p, then (¢, X) € JVNF.
Aziom 8. If X CY C Z and p € SY(Z), then (p, X) € JYNF if and only if
(p,Y)€ JVNF and (p|Y,X) € JVNF.
Aziom 4. If X C Y, dom(p) C Y and (p,X) € JYNF, then there exist q €
SV(Y) such that p C q and (¢, X) € JYNF).
Aziom 5. There is a cardinal p such that if X C Y C Z, p € SY(Y) and
(p,X) € JYNF, then |{g€ SV(Z):pC q,(¢,X) € JVNF}| < .

ere is a V-formula in the language
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Aziom 6. There is a cardinal s, that for every p € P and every X € X, if
(p, X) € JVNF, then there exist X; C X such that |X;| < s and (p, X;) € JVNF.

Aziom 7. If p € SV(X), then (p, X) € JVNF.

Let [T] € JSp(A)/sq. Let’s introduce the notation:

[Tv] ={A € [T]: A is a V-A-stable, V-complete}.

Theorem 15. Let JSp(A)/w be a homogeneous factor spectrum, [T] € JSp(A) /s
then in the class [Ty] the relation JY NF satisfies Azioms 1-7.
Proof. Due to the homogeneity of the factor spectrum, it follows that ea& K
E|r) is elementary with respect to all spectrum. From this follows the perfecti f
the spectrum itself. Next we use the proof of Theorem 9 modulo the chang
since the perfectness of spectrum, [T]* is a model complete theory an ngly,
any formula in the language of this theory is equivalent to V N 3. O
We now define the abstract concept of Jonsson independeng
Let 7] € JSp(A)fw, 1 = (@Y, X)fa € Ciry, X, ¥ b7/

semantic model C’[T}, such that X C Y'}. We will call a set I'@\Jo
system of the class [T if the following 6 propertiegpar isfied:

19 (invariance) for every triple (a,Y, X) € I and% ism f of the model

bsets of the

Ciry, (f(@), f(Y), f(X)) € I;
20 (local character) for every @ and Y thesg is a @ountable subset X C Y such
that (a,Y,X) € I;
30 (finite character) for each a,
tuples bin Y, (a,X Ub, X) € I;
49 (extension) for each @, X and Y, ists a tuple a’, that has the same
length and type over X, as @, sosthat (a’,Y, X) € I;
5 (symmetry) for each a, b anddX, (a, XUb, X) € I if and only if (b, XUa, X) € I;
6° (transitivity) for each CYCZ (a,Z,X) e Iifandonlyif (a,Y,X) €

€ I if and only if, for all finite

)

the semantic mo
Vo' €Y' . In thi

Note also @

15 a subsequence of @ and (a,Y, X) € I, then (a/,Y,X) € I

also. Indegd, @efording to the property 3° it suffices to check that (@', X Ub, X) € T
for bEY &know that (a, X Ub,X) € I. By the symmetry property 5°,
(b, , whence (b, X U@, X) € I, according to property 3° and again by
pro we have (a’, X Ub, X) € I.

A son independent system I of class [T] is called good if it satisfies the
following property:

7% (amalgamation) let X be an existentially closed model of the theory T', Y,

D X is Jonsson independent over X, b, b’ are tuples in Cl1), that have the same
ype p over X and satisfy (b,Y,X) € I, (V/,Y’, X) € I, respectively; then there is
some tuple ¢ in Cfry, that implements the same type as b over Y and b’ over Y7,
and satisfying (¢, Y UY’, X) € I.

Definition 28. We will say that a € Ci1) does not depend on'Y over X and write
al{Y, if (a,Y,X) € I, where I is a Jonsson good independence system.

Definition 29. We will call a Jonsson theory T Jonsson simple (J-simple) if for
any V-cl-set of B, for any p € SY(B) there exists a V-cl-set Ag C B: |Ao| < |T,
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such that p does not fork over Ag. A class [T] € JSp(A)/s is called J-simple if
every theory A € [T is J-simple.

We have a Jonsson version of the Kim-Pillay theorem 14:

Theorem 16. Let the class [T] € JSp(A)/s be J-simple, perfect, V-complete.
Then for each tuple a € Cir) and V-cl-Jonsson sets X CY of the model Cipy the
following conditions are equivalent:
(1) aL{Y in the language of theory A for each A € [T); LS
(2) (tp(a/Y),X) € JVNF in the language of theory A for each A € [T]
(3) for all types p € P, consistent with [T]*, X € X the type p doe M
over X (in the classical sense of S. Shelah [8]), where [T]* is the ce

the class [T).
Proof. The equivalence of conditions (1) and (2) follows from_The 14. The
ica

equivalence of conditions (2) and (3) follows from the followi ns: since
the class [T] is perfect, then from Theorem 15 we have that en V in the
class [T] the relation JV NF satisfies axioms 1-7, and then em 8 we have
a transition to classical stability in the sense of S."She (|
6. UNCOUNTABLY CATEGORICAL CENTRAL TY, ROBINSON SPECTRUM
In this section, we study the model-the i operties of the Robinson spectrum

hetinterest of specialists in Model
categorical universals ([10], sec. 5
ider a more general situation: the
son theory, namely, it is the Jonsson
e technique of working with the central types of
ents of which are the Jonsson universals. The
the language with additional constants and a
uncountable categoricity is obtained for the class

Theory and universal algebra in th
from the appendix) is well known.
Robinson theory is a special ca
universal. As an additional tool,
the fixed spectrum is used,
central type is obtained
unary predicate. A cr
of Robinson spec

e

Definition 3 t T is called Robinson theory if it satisfies the following
conditions:

ha one infinite model;

s universally axiomatizable;

mits the joint embedding property
mits the amalgamation property.

be a Robinson theory, A be an arbitrary model of signature o. The
binson spectrum of the model A is the set:

RSp(A) = {T|T is Robinson theory in the language of signature o and
A e Mod(T)}.

Consider RSp(A)/u the factor set of the Jonsson spectrum of the model A with
respect to <.
If T is an arbitrary Robinson theory in the language of signature o, then Ejp) =

\J Ea is the class of all existentially closed models of class [T] € RSp(A) /.
A€[T]

Let A be an arbitrary model of signature o. Let |RSp(A)/w| = | K|, K be some
index set. We say that the class [T'] € RSp(A)/s is a N-categorical if any theory
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A € [T] is a R-categorical and, respectively, the class RSp(A)/w will be called a
R-categorical if for each j € K the class [T]; is a N-categorical.

Definition 31 ([28], p. 93). An enrichment T is called admissible if the V-type
(this means that the V subset of the language L, and any formula from this type

belongs to V) in this enrichment is definable within the framework of Tr- stability,
where T" is the enrichment of the signature o.
Definition 32 ([28], p. 93). A Robinson theory T is called hereditary zf in

of its admissible enrichments, any extension is a Robinson theory. The cla
RSp(A) /s will be called hereditary if each theory A € [T is hereditary.

Consider the general scheme for obtaining the central type for an a
Jonsson theory. Let’s denote it by (f).
Let C be a semantic model of the theory T, A C C. Let or =
I' = {P}U{c}. Let T = Thy(C,a)aecpc) U ThV(ET) U {P(c 0}, Where
P(C) is the existentially closed submodel of C, {"P C"} is an.i sét of sentences
expressing the fact that the interpretation of the symbol P tially closed
submodel in the language of the signature or. That dsy thejinterpretation of the
symbol P is a solution of the equation P(C) = M T language or. Due
to the heredity of the theory T, the theory T 4 &on theory. Consider all

e‘or. Since T is a Jonsson

theory, then it has its own center, let us by this center is one of the
above completions of the theory 7.,When t ure or is restricted to o U P
due to the laws of first-order logic, stant ¢ no longer belongs to this
signature, you can replace this constan ariable symbol, for example z. And

then the theory T will be a co or the variable x.
Using this schema for a class,
class [T] € JSp(A)/sa. Let ) =[T7*. For any A € [T] € JSp(A)/s denote
the theory obtained by ' ), by A. Consider the class [T'] and then class
[T)* after restriction a to the scheme (f) becomes the center type of the
€ Er is Jonsson minimal if for any definable X C M

6’ i/ s finite. We say that a theory T' Jonsson strongly minimal,

Er is minimal. A non-algebraic type containing a Jonsson
ormula is called Jonsson strongly minimal.

29], p. 298). Let T be universal theory, complete for existential
ving a countably algebraically universal model. Then T has an algebrai-
e model, which is (X, A)-atomic.

ition 33 ([29], p. 304). A model A is called the A-good algebraically prime
del of the theory T if A is a countable model of T and for each model B of the
eory T, eachn € w and all ag,...,a,_1 € A, by,...,by_1 € B if
(A7a'07 e 7an—1) =A (B7b07 ey bn—l>7
then for each a,, € A there is some b,, € B such that (A, ag,...,a,) =a (B,bg,...,b,).
Theorem 18 ([29], p. 309). Let T be V3-theory, complete for existential sentences,
admitting Ry. Then the following conditions are equivalent:

(1) T has an algebraically prime model;
(2) T has (3, A)-atomic model;
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(3) T has (A, 3)-atomic model;
(4) T has a A-good algebraically prime model;
(5) T has a single algebraically prime model.

Theorem 19. Let [T] be hereditary class from RSp(A)/w, then the following

conditions are equivalent:
(1) any countable model from E[T] has an algebraically prime model extension,
m E[T] ; %
2) P<. is the strongly minimal type, where P, is the central type of
(T] (7]

Proof. (1)=(2). Consider a semantic model Cz of the class [T]. From Dgfiniti

and 3 it follows that the model C[T] is w -universal. Since its cardin greater
than countable, consider its countable elementary submodel D. Since mo o

T
is existentially closed (see Lemma, 1), its elementary submodel tentia{l)]f
closed. Hence we have that it is countably algebraically uniye efice it remains
to apply Theorem 17, according to which every theory A € ] algebraically
prime model Ay. We define by induction A1, whigh will be'an algebraically prime
model extension of A5 and Ay = [J{A4s | 6 < A}. Then = U{45|0 < wr}.

is possible. Define a function ¢ : w; — w 1A = Bs |0<d <wi}
of the isomorphisms by induction on d:
].) gOanndfO:A0—>Bo;
2) gA =U{gd|6 <A} and fx =
3) fs+1 is equal to the uniongof the ¢
induction on ~;
4) f§+1 = fs, f§+1 = AL
5) suppose that f; Bsy1. If fj, is mapping onto, then p = 7.
Otherwise, by vigtue o gebraic primeness of Ags 141, we can extend fy, ; to

Suppose that B = A and cardB = wy. To show , let us expand B into a
chain {Bs|0 < wy} of countable models. Due toghe Jomgsonness of the theory A, this
a in S

{fJ1v < p}, which is determined by

fgf: P Agsyt +15
6) 9(0 + 1) =g

fs5 | 0 < w1} maps isomorphically A to B. Now it remains
. Since B is an arbitrary model of the theory A, and A is the

, it follows that E for each A € [T] in uncountable cardinality
model, which means that the semantic model C[T] is saturated, that

ss [T] will be perfect. It follows that Mod[T]* = Epz. Therefore, [T]*

-categorical. By virtue of the Lachlan-Baldwin theorem, in the theory [T]*

re exists a strongly minimal formula. Passing to the central type, we get a

onprinciple type that contains a Jonsson strongly minimal formula, therefore, the
type is Jonsson strongly minimal.

(2) = (1). Since P[CT] is a strongly minimal type, when returning to the signature

or = o UT this type becomes [T]* theory. Since this theory is the center of the class

[T], then it is complete. Let us show that [T]* is wj-categorical. By inductance,

for any models A, B € Mod[T]* there exists models A’, B’ € Bz and isomorphic

embeddings f : A — A, g : B — B’. Without loss of generality, we can assume that
|A’| = |B’| = w;. Suppose A 2 B, then A’ 22 B’. Therefore, there is ¢(z) € B(At)
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such that A’ = ¢(x) and B’ |= —p(x). Since [T] is a hereditary class, then [T] €

RSp(A) /s and A" € Mod([T]*) due to the universal axiomatizability of this class
and the fact that A’, as an existentially closed model, is isomorphically embedded
in the semantic model C of the class [T]. Since [T]* = Th(C), which means it is
complete, then [T]* - Jz¢(x). Since A’ and B’ are Jonsson minimal, then either
p(A’) is finite, or A"\p(A’) is finite. Let ¢(A’) be finite, then there is a V3-sentence

1 that shows that ¢(A’) is finite and [T]* F V3(p&), hence B’ = ¢(z),, but
B’ E ¢(x)&—p(z), but at the same time, since A’, B’ € B, A’ =y3 B’, thenwie
got a contradiction with a strongly minimality.

If the definable complement of the formula is finite in the model A’, the proof

of the contradiction is similar to the above. That is, we have shown thaf [T]%5is &
w1 -categorical.

Since the theory [T]* is a w-categorical, then by Morley’s uncount@ble catégéricity
theorem, it is perfect. Then [T]* is a model complete theory amdldod{T]* = Ex
for each A € [T] (by the criterion of the perfectness of Jons§ongtheory), i.e.

Mod[T]* = Eg. 1If [T]* is a model complete, then any{isomorphic embedding

*

is elementary. Since [T]* is a complete theory, by@virtme of Worley’s theorem, we
obtain what is required. O
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