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INDEPENDENCE AND SIMPLICITY IN JONSSON THEORIES

WITH ABSTRACT GEOMETRY

À.R. YESHKEYEV, Ì.Ò. KASSYMETOVA, Î.I. ULBRIKHT

Abstract. The concepts of forking and independence are examined in
the framework of the study of Jonsson theories and the �xed Jonsson
spectrum. The axiomatically given property of nonforking satis�es the
classical notion of nonforking in the sense of S. Shelah and the approach
to this concept by Laskar-Poizat. On this basis, the simplicity of the
Jonsson theory is determined and the Jonsson analog of the Kim-Pillay
theorem is given. Abstract pregeometry on de�nable subsets of the Jonsson
theory's semantic model is de�ned. The properties of Morley rank and
degree for de�nable subsets of the semantic model are considered. A
criterion of uncountable categoricity for the hereditary Jonsson theory
in the language of central types is proved.

Keywords: Jonsson theory, existentially closed model, Morley rank,
cosemanticness, Jonsson spectrum, Jonsson set, a fragment of Jonsson
set, Jonsson independence, Jonsson nonforking, Jonsson simplicity, cent-
ral type, strong minimality, pregeometry, modular geometry.

1. Introduction

This article is related to the study of important concepts of the modern Model
Theory, such as independence, simplicity, forking, Morley rank, strong minimality,
modular geometry in the framework of the study of Jonsson theories. The relevance
of the study of these issues, �rst of all, is dictated by the fact that Jonsson theories,
generally speaking, are not complete, but at the same time, all the above concepts
have been de�ned and have a signi�cant development within the framework of the
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study of complete theories. Nevertheless, such classical objects as groups, Abelian
groups, �elds of �xed characteristic, modules, important classes of lattices, and
polygons are examples of algebraic systems whose theories of classes are Jonsson
theories.

In the classical Model Theory, one of the modern trends is the "geometric"approach
to the study of the abstract independence's properties of the considered structures.
Its essence lies in specifying special conditions in the form of axioms, which must
be satis�ed by de�nable subsets of the considered models. For example, in the case
when de�nable closures coincide with algebraic closures of given subsets, one can
notice that the structural properties of such a model in the sense of dimension are
very similar to vector spaces.

In this article, we adapt the elements independence concept of the considered
semantic model by an axiomatic way, setting some binary relation of nonforking
and the corresponding geometry of de�nable subsets of the semantic model of the
Jonsson spectrum's central class. Moreover, we transfer the corresponding results
for complete theories in the framework of studying a simple class from the Jonsson
spectrum, where as a simple class means the Jonsson analog (De�nition 29) of
a simple complete theory. An important role in the description of the Jonsson
spectrum is played the central types of cosemanticness classes of the Jonsson spectrum
of the axiomatizable class of an arbitrary signature's models. The central type of
Jonsson theory is a certain syntactic invariant, which is uniquely determined with
some enrichment. The admissibility of the language enrichment presupposes the
preservation of de�nability of the considered type with the kind of stability [1],
[2] corresponding to the given enrichment. It is well known that enrichment with
predicate and constant is an admissible enrichment. In this work, enrichment occurs
due to the unary predicate and constants. It should be noted that the emergence of
new types of stability with various enrichments of the signature, and at the same
time generalizing the concept of classical stability, in itself is an interesting scienti�c
fact, and this problem has been actively studied within the framework of the study
of complete theories [1], [2]. Moreover, it turned out that the concept of Jonssonnes
is not always preserved even with admissible enrichments. At the moment, we do
not know how to get around this rather complicated obstacle in the general case,
which compels us to restrict ourselves to the framework of the so-called hereditary
theories. A theory is said to be hereditary if, for any admissible enrichment, it
preserves the property of Jonssonness.

All the main results are proved for some �xed Jonsson spectrum. Earlier, results
related to the Jonsson spectrum has already been obtained, which allow us to
note that this is not a simple generalization of the concept of Jonsson theory,
but a certain syntactic invariant of an arbitrary model of an arbitrary signature
in connection with the fact that the concept of cosemanticness generalizes the
concept of elementary equivalence. For example, in the papers [3], [4], results were
obtained that generalize the classical classi�cation theorems about the elementary
equivalence of Abelian groups and modules. It is also clear that the study of the
properties of the elements of a �xed Jonsson theory's semantic model using modern
methods associated with the study of the nonforking property in the framework
of simple theories will allow us to study in more detail the structure of imperfect
Jonsson theories. A striking example of such theories is the group theory.
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INDEPENDENCE AND SIMPLICITY IN JONSSON THEORIES 435

In earlier works on the study of Jonsson theories [3], [4], [5], [6], has been studied
well enough the connection between Jonsson theory and its class of existentially
closed models and allowed to highlight the topics of positive Jonsson theories [7]
and to de�ne new problems in this direction.

The work consists of 6 sections, including an introduction. The second section
provides information on Jonsson theories and their models. In the third section,
we study the axiomatic de�nition of the concept of nonforking on Jonsson subsets
of some semantic model. In the fourth section, we study the geometry of strongly
minimal sets on subsets of some �xed semantic model. In the �fth section, Theo-
rem 16 is proved, which connects the notion of nonforking, given on subsets of a
�xed semantic model, and the notion of independence. The essence of this result is
the Jonsson analog of the well-known Kim-Pillay result (Theorem 14). In the �nal
sixth section, we present a criterion for uncountable categoricity (Theorem 19) in
the language of strong minimality of the central type of the hereditary class of a �xed
Robinson spectrum's cosemanticness. It is easy to see that the concept of Robinson
spectrum is a special case of Jonsson spectrum, since in the considered spectrum,
instead of Jonsson theories we consider their special cases Jonsson universal theories.

We give a brief survey of the main results of this work, namely, Theorems 16
and 19.

The concept of nonforking has been systematically studied in [8] in the framework
of the study of model-theoretical properties stable theories. To study the abstract
property of independence due to the work [9], it turned out to be enough to work
in the class of simple theories, which does not necessarily contain stable theories.
In connection with this fact, it seems to us interesting to adapt the concept of a
simple theory in the framework of the study of Jonsson theories, and then move
to a more general situation and consider this concept in a more general context of
the perfect Jonsson spectrum for any model of an arbitrary signature. Theorem 16
demonstrates exactly this, i.e. a Jonsson analog of the Kim-Pillay theorem was
obtained (Theorem 14), and the concept of nonforking, de�ned axiomatically on
subsets of the semantic model of the cosemanticness class of a �xed spectrum,
made it possible to determine the relation of Jonsson system of independence on
this cosemanticness class.

The notion of categoricity is central to the study of the structural properties of
complete theories' models. A natural desire is to �nd Jonsson analogs of results
related to the concept of categoricity. In this paper, one of the main results is the
description of the uncountable categoricity of some hereditary class of the Robinson
spectrum. There are well-known results for complete theories related to uncountable
categoricity, for example:

Theorem 1 (Erimbetov, Lachlan, Baldwin [10], p. 529). For a countable complete
theory T to be a ω1-categorical, it is necessary and su�cient that T have a non-
two-cardinal strongly minimal formula ϕ(x, a).

Theorem 2 (Morley [11], p. 152). A theory T if and only if it is a ω1-categorical
if any of its countable models has a simple proper elementary extension.

In this paper, we have proved Theorem 19, which naturally relates to both
of the above Theorems 1, 2 through the necessary conditions of these theorems
and generalizes them using the notion of an algebraically prime model extension,
moreover, since the central type corresponds to the center of the enriched Jonsson
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theory under consideration (and the center is a complete theory), we obtain a
re�nement of Theorem 1 within the framework of studying uncountably categorical
Robinson theories.

It should be also noted that in this article in an implicit form there is a formed
open question about the description of hereditary Jonsson theories.

All of the above considerations led us to write this article.

2. Basic concepts and results concerning Jonsson theories

Let us give well-known de�nitions of concepts and results related to Jonsson
theories, which are necessary for study independence and simplicity within the
framework of Jonssonness. Statements that are given without proof include the
link where these statements were obtained.

De�nition 1 ([10], p. 80). A theory T is called a Jonsson theory if

(1) T has an in�nite model;
(2) T is inductive, i.e. T is equivalent to the set of ∀∃-sentences;
(3) T has the joint embedding property (JEP ), i.e. any two models A, B of the

theory T are isomorphically embedded in some model C of the theory T ;
(4) T has the amalgamation property (AP ), i.e. if for any A, B, C |= T such

that f1 : A→ B, f2 : A→ C are isomorphic embeddings, there are D |= T
and isomorphic embeddings g1 : B → D, g2 : C → D, such that g1f1 = g2f2.

Examples of Jonsson theories are the theories of well-known classical algebras
such as groups, Abelian groups, Boolean algebras, linear orders, �elds of �xed
characteristic, and polygons.

De�nition 2 ([12], p. 529). Let κ ≥ ω. A model M of the theory T is called κ-
universal for T , if each model of the theory T of cardinality strictly less than κ is
isomorphically embeddable into M .

De�nition 3 ([12], p. 529). Let κ ≥ ω. A model M of the theory T is called κ-
homogeneous for T , if for any two models A and A1 of the theory T , which are
submodels of M , cardinality is strictly less than κ, and isomorphism f : A → A1,
for each extension B of the model A, that is a submodel of M and the model of the
theory T of cardinality is strictly less than κ there exists an extension B1 of the
model A1, which is a submodel of M , and the isomorphism g : B → B1, continuing
f .

A homogeneous-universal model for T is called a κ-homogeneous-universal model
for T of cardinality κ, where κ ≥ ω.
Theorem 3 ([12], p. 529). Every Jonsson theory T has a κ+-homogeneous-universal
model of cardinality 2κ. Conversely, if T is inductive, has an in�nite model, and
has a ω+-homogeneous-universal model, then T is a Jonsson theory.

Theorem 4 ([12], p. 529). Let T be a Jonsson theory. Two models A and B,
κ-homogeneous-universal for T , are elementarily equivalent.

De�nition 4 ([12], p. 529). The semantic model CT of the Jonsson theory T is
called the ω+-homogeneous-universal model of the theory T .

For any Jonsson theory, a semantic model always exists, so it plays an important
role as a semantic invariant.

From the de�nition of the semantic model it follows that:
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INDEPENDENCE AND SIMPLICITY IN JONSSON THEORIES 437

Proposition 1 ([13], p. 160). Any two semantic models of the Jonsson theory T
are elementarily equivalent to each other.

Lemma 1 ([13], p. 162). The semantic model CT of the Jonsson theory T is T -
existentially closed.

De�nition 5 ([13], p. 161). The semantic completion (center) of the Jonsson theory
T is called the elementary theory T ∗ of the semantic model CT of the theory T , i.e.
T ∗ = Th(CT ).

De�nition 6 ([13], p. 162). A Jonsson theory T is called perfect if every semantic
model of T is a saturated model of T ∗.

Theorem 5. Let T be an arbitrary Jonsson theory, then the following conditions
are equivalent:

1) the theory T is perfect;
2) T ∗ is a model companion of the theory T .

Proof. Follows from Theorem 2.3.6 [13]. �

Let us denote by ET the class of all existentially closed models of the theory T .

Theorem 6 ([13], p. 162). If the Jonsson theory T is perfect, then ET = Mod(T ∗),
where T ∗ = Th(CT ).

Proposition 2 ([10], p. 368). If the theory T is inductive, then any model of the
theory T is embedded in some existentially closed model of the theory T .

De�nition 7 (T.G. Musta�n [13], p. 175). We say that the Jonsson theory T1 is
cosemantic to the Jonsson theory T2 (T1 ./ T2), if CT1

= CT2
, where CTi is the

semantic model of the theory Ti, i = 1, 2.

Let T be some Jonsson theory of �xed signature σ and Mod(T ) be the class of
all models of the theory T . Consider an arbitrary model A from Mod(T ). Let us
call the Jonsson spectrum of model A the set:

JSp(A) = {T |T is a Jonsson theory in the language σ and A ∈ Mod(T )}.
It is easy to see that the cosemantic relation on a set of theories is an equivalence

relation. Then we can consider the JSp(A)/./ factor set of the Jonsson spectrum
of the model A with respect to ./.

De�nition 8. Let A and B be models of the same signature. We say that the model
A JSp-cossemantic to the model B (A ./

JSp
B), if

JSp(A)/./ = JSp(B)/./.

3. Special forking and independence relations for fragments of

Jonsson sets

One of the most important concepts in the modern Model Theory is the concept
of forking. With the help of this concept, we can estimate the dependence of the
properties of elements on each other on the �rst-order language. It should be noted
that this concept was introduced by S. Shelah [8] to solve a very important problem
on the spectrum of an arbitrary complete theory. Over time, the specialist from
Model Theory, having appreciated the depth and signi�cance of the concept of
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forking, began to look for new approaches to its simpler explanation. One of the well-
known sources in this direction is the famous work of the French mathematicians
B. Poizat and D. Lascar [14], in which the concept of forking was rede�ned within
some order. Later, other mathematicians noticed that it is possible to consider the
abstract properties of the independence of the model elements from each other
and relate this to the �rst-order properties of the types of these elements for
nonforking. In particular, as an example, we can cite the following monograph
by D. Baldwin [15], where he considered the axiom system that de�nes the abstract
property of independence.

The central concept of this section is the concept of a fragment of a Jonsson
set, which was de�ned by A.R. Yeshkeyev in the paper [16], and some of its model-
theoretical properties were considered in the papers [17], [18], [19].

De�nition 9 ([16], p. 38). A set X is called a Jonsson set in the theory T , if it
satis�es the following properties:

(1) X is a de�nable subset of CT , where CT is a semantic model of the theory T ;
(2) dñl(X) is a carrier of existentially closed submodel CT , where dñl(X) is

de�nable closure of X.

As can be seen from the de�nition, the concept of a Jonsson set is in very good
agreement with the concept of a basis for a linear space. Note that linear spaces
are a special case of modules, and the theory of modules is Jonsson theory.

Consider a countable language L, a complete for existential sentences perfect
Jonsson theory T in the language L and its semantic model CT . LetX be a Jonsson
set in T and M be an existentially closed submodel of the semantic model CT ,
where dcl(X) = M . Then let Th∀∃(M) = Fr(X), where Fr(X) is the Jonsson
fragment of the Jonsson set X.

Since the concept of forking is a central concept to the stability theory, there is a
natural desire to study it from di�erent points of view (especially if we want to use
it). For this purpose, we describe the forking axiomatically. The classical concept
of forking belongs to S. Shelah [8], we recall it.

De�nition 10 ([8], p. 43). The set of formulas {ϕ(x̄, āi) : i < k} = p is called
k-inconsistent for some natural number k if every �nite subset p of cardinality k is
inconsistent, that is

|= ¬(∃x̄)(ϕ(x̄, āi1) ∧ ... ∧ ϕ(x̄, āik))

for each i1 < ... < ik < k.

De�nition 11 ([8], p. 85). The partial type p is divisible over the set relative to
k ∈ ω if there exist a formula ϕ(x̄, ā) and the sequence 〈āi : i ∈ ω〉, such that:

(1) p ` ϕ(x̄, ā);
(2) tp(ā/A) = tp(āi/A) for all i;
(3) {ϕ(x̄, āi) : i ∈ ω} is k-inconsistent.

p is divisible over A, if p is divisible over A relative to some k.

De�nition 12 ([8], p. 85). The type p (not necessarily complete) fork over A in T
if there are formulas {ϕ(x̄, āi) : i ∈ ω}, such that:

(1) p `
∨

0≤i≤n ϕi(x̄, āi);

(2) ϕi(x̄, āi) is divisible over A for each i.
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INDEPENDENCE AND SIMPLICITY IN JONSSON THEORIES 439

Let B ⊂ A, p ∈ Sn(A). Then the type ð is called de�nable over Â if for each
formula ϕ(x̄, v̄) of the language L(x̄) there is a tuple b̄ ∈ B and a formula ψ(v̄, ū) ∈
L, such that ∀ā ∈ A ϕ(x̄, ā) ∈ p if and only if |= ψ(ā, b̄). The formula ψ(v̄, b̄) from
L(B) in this case is called ϕ-de�ning type ð by the formula. A type p is called
completely de�nable over Â if there exist C |= T , q ∈ Sn(C), such that A ⊆ C,
p = q � A, q is de�ned over B. If A |= T, p ∈ Sn(A) and ð de�ne over Â, where
B ⊆ A, then the mapping α : L(x̄) → L(B), putting each the formula ϕ(x̄, v̄)
from L(x̄) accordance with ϕ-de�ning type ð the formula is called schema over Â,
de�ning ð. Obviously, if d and d′ are schemas over B, de�ning the same type, then
|= d(ϕ) ↔ d′(ϕ) for any formula ϕ ∈ L(x̄). If A |= T ; d is a schema that de�nes
p ∈ Sn(A), A ⊂ A1, then {ϕ(x, ā1)|ā1 ∈ A1, ϕ ∈ L(x̄)}, |= d(ϕ)(ā1) is called an heir
p over A1.

Let T be a Jonsson theory, SJ(X) be the set of all existential complete n-types
over X consistent with T for every �nite n.

De�nition 13 ([13], p. 201). We say that a Jonsson theory T is a J-λ-stable if for
any T -existentially closed model A, for any subset X of the set A such that |X| ≤ λ
it follows that |SJ(X)| ≤ λ. The Jonsson theory T is called a J-stable if it is a
J-λ-stable for some λ.

In connection with the above de�nition, we have the following result:

Theorem 7 ([3], p. 868). Let T be a perfect Jonsson theory complete for ∃-
sentences, λ ≥ ω. Then the following conditions are equivalent:

(1) T is a J-λ-stable;
(2) T ∗ is a λ-stable, where T ∗ is the center of Jonsson theory T .

For complete theories, an axiomatic approach was already known for de�ning
the notion of nonforking, for example, in [20]. In this paper, we will also approach
the adaptation of the concept of Jonsson nonforking by the axiomatic way.

Let A be the class of all Jonsson subsets of the ∃-saturated semantic model CT
(i.e., any 1-∃-type over any subset of the given model is realized in it) of some
Jonsson theory Ò, P is the class of all existential types (not necessarily complete).
Let JNF ⊆ P × A be some binary relation. Let us write in the form of axioms
some conditions imposed on JNF (Jonsson nonforking).

Axiom 1. If (p,A) ∈ JNF and f : A → B are isomorphic embeddings, then
(f(p), f(A)) ∈ JNF .

Axiom 2. If (p,A) ∈ JNF and q ⊆ p, then (q, A) ∈ JNF .
Axiom 3. If A ⊆ B ⊆ C and p ∈ SJ(C), then (p,A) ∈ JNF if and only if

(p,B) ∈ JNF and (p�B,A) ∈ JNF .
Axiom 4. If A ⊆ B, dom(p) ⊆ B and (p,A) ∈ JNF , then there exist q ∈ SJ(B)

such that p ⊆ q and (q, A) ∈ JNF .
Axiom 5. There is a cardinal µ, such that if A ⊆ B ⊆ C, p ∈ SJ(B) and

(p,A) ∈ JNF , then
∣∣{q ∈ SJ(C) : p ⊆ q, (q, A) ∈ JNF}

∣∣ < µ.
Axiom 6. There is a cardinal κ, such that for any p ∈ P and every A ∈ A, if

(p,A) ∈ JNF , then there is A1 ⊆ A, such that |A1| < κ and (p,A1) ∈ JNF .
Axiom 7. If p ∈ SJ(A), then (p,A) ∈ JNF .
Let Fr(X) be a fragment of some Jonsson set X, where X is a subset of the

semantic model CT of some Jonsson theory T . Then we have the following result.

Theorem 8. The following conditions are equivalent:
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(1) the relation JNF satis�es axioms 1-7 with respect to the fragment Fr(X);
(2) Fr(X)∗ is a stable and for all p ∈ P, A ∈ A (p,A) ∈ JNF ⇔ p does not

fork over A (in the classical sense of S. Shelah [8]), where Fr(X)∗ is the
center of the fragment Fr(X).

The following well-known facts will be used in the proof of the theorem:
Fact 1 (Ramsey's theorem [21], p. 173). Let I be an in�nite set, n < ω and let

[I]n be the family of all subsets of the set I, which consist exactly of n elements.
If [I]n = A0 ∪ ... ∪ Ak−1, k < ω and Ai ∩ Aj = ∅ for i < j < k, then there is an
in�nite set J ⊂ I such that [J ]n ⊂ Ai for some i < k.
Fact 2 (Lemma 14.9 [22], p. 73). Let T be a stable theory, M be a saturated

model of cardinality µ+, and the types p1, p2 ∈ S(M) does not fork over A. Then
if p1 � A = p2 � A, then there exists an elementary monomorphism f, that is
identical on A such that f(d1) ∼ d2, where d1, d2 are schemas that de�ne p1 and
p2 respectively.

Proof of Theorem 8.
(1) ⇒ (2). Let λ = 2ρ·|T |·µ, where λ, ρ and µ are cardinals corresponding to

Axioms 1-7. Obviously, that λρ = λ. Let |A| = λ. If p ∈ SJ(A), then, by Axiom 7,
(p,A) ∈ JNF, and by Axiom 6, there exists Ap ⊆ A such that |Ap| < ρ and
(p,Ap) ∈ JNF. Then by Axiom 3 (p � Ap, Ap) ∈ JNF. Denote p � Ap by g(p).
Then, according to Axiom 5, |{q ∈ SJ(A) : g(q) = g(p)}| < µ. Hence,

|SJ(A)| ≤ |{g(p) : p ∈ SJ(A)}| · µ ≤ |Aρ| · 2ρ·|T | · µ ≤ λρ · λ · λ = λρ = λ.

Thus, the theory Fr(X) is a J-λ-stable. Note that Fr(X) is a Jonsson theory,
and since Fr(X) is a J-λ-stable, this theory has a saturated model in any regular
cardinality, therefore Fr(X) is a perfect Jonsson theory. Then, according to Theo-
rem 7, we conclude that Fr(X)∗ is a λ-stable.

Let (p,A) ∈ JNF . Let us show that p does not fork over A. Let B = dom(p).
Then, by Axiom 4, there exists q ∈ SJ(B) such that p ⊆ q and (q, A) ∈ JNF . Let
us prove that q does not fork over A (then p does not fork over A by Axiom 2). Let's
assume the opposite. Then, by the de�nition of forking and perfectness of the theory
Fr(X), there is a �nite set of existential formulas Σ such that q ` ∨{ϕ : ϕ ∈ Σ} and
each formula ϕ ∈ Σ is divisible over A. Let C = B ∪D, D be the set of constants
appearing in at least one of the formulas from Σ. According to Axiom 4, there exists
q0 ∈ SJ(C) such that q ⊆ q0 and (q0, A) ∈ JNF . Obviously, q0 ` ∨{ϕ : ϕ ∈ Σ},
therefore there is ϕ(x̄, ā) ∈ q0 ∩Σ. Using Fact 1, the compactness theorem and the
divisibility of ϕ(x̄, ā) over A, we can show the existence of the sequence 〈āα : α <
µ+〉 and elementary monomorphisms fα, α < µ+, identical on A so that ā0 = ā,
āα = fα(ā), where α < µ+ and {ϕ(x̄, āα) : α < µ+} k is inconsistent for some
k < ω.

Let E = C ∪ {āα : α < µ+} and qα = fα(q0), where 0 < α < µ+. According
to Axiom 1, (qα, A) ∈ JNF , where α < µ+. According to Axiom 4, there exist
q′α ∈ SJ(E) such that qα ⊆ q′α and (q′α, A) ∈ JNF . It is clear that ϕ(x̄, āα) ∈ q′α and
q ⊆ q′α, where α < µ+. We have |{q′α : α < µ+}| = µ+, since {ϕ(x̄, āα) : α < µ+} k
is inconsistent. We have obtained a contradiction with Axiom 5. Therefore, q does
not fork over A. Thus, we have that if (p,A) ∈ JNF , then p does not fork over A.

Let's prove it in the opposite direction. Let p does not fork over A. Since the
theory Fr(X) is perfect, then Fr(X)∗ is model complete (Theorem 5), and we
only need to work with existential types and consider ∃-saturated existential closed
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models of the theory Fr(X). We need to prove that (p,A) ∈ JNF . Let M ⊇ A,
M ⊇ dom(p), |M | > 2ρ·|T |·µ and M be ∃-saturated model of the theory Fr(X)∗,
t ∈ SJ(M), p ⊆ t, t does not fork over A. By Axiom 7 (t � A,A) ∈ JNF and by
Axiom 5 there exists q ∈ SJ(M) such that q ⊇ t � A and (q, A) ∈ JNF. As shown
above, (q, A) ∈ JNF implies that q does not fork over A. According to Fact 2,
there exists an automorphism f of the model M identity on A such that t = f(q).
Then by Axiom 1 (t, A) ∈ JNF , and by Axiom 2 (p,A) ∈ JNF . Therefore, the
implication (1)⇒ (2) is proved.

(2)⇒ (1). It is easy to see that this follows from the proof of Theorem 19.1 from
[23] with a generalization of the corresponding concepts to Jonsson analogs.

Consider gain of Lemma 19.7 from [23].
Let Ò be some Jonsson theory, M , N be existentially closed submodels of the

semantic model CT of Ò. If A ⊆ M ∩ N , p ∈ SJ(M), q ∈ SJ(N), then p ≥A q
means that for any existential formula ϕ(x̄, ȳ) ∈ L(A) from the fact that there is
a tuple m̄ ∈ M and ϕ(x̄, m̄) ∈ p it follows that there is a tuple n̄ ∈ N such that
ϕ(x̄, n̄) ∈ q; p ∼A q means that p ≥A q and q ≥A p.

[p]A 
 {q : ∃N |= T, q ∈ SJ(N), p ∼A q}.
It is easy to see that the relation ≥A induces a similar relation between classes,

which is a partial ordering relation. If A = ∅, then the index A for ≥A and ∼A
will be omitted. Each equivalence class in ∼A is determined uniquely by the set of
existential formulas from L(A), representable in each type of this class.

De�nition 14. Let A ⊆ M , ∃-formula ϕ(x̄, ȳ) ∈ L(A) be called representable in
p ∈ SJ(M) if there is a tuple m̄ ∈M such that p ` ϕ(x̄, m̄).

Thus, it is obvious that the number of equivalence classes in ∼A is at most, than
2|L(A)| = 2|L|·|A|.

Equivalence classes with respect to ∼A will be denoted by ξA. If p ∈ SJ(A), then
Ωp denotes a partially ordered set

〈{ξA : ∃M ⊇ A, p1 ∈ SJ(M), p ⊆ p1, p1 ∈ ξA};≥〉.

De�nition 15. Let p ∈ SJ(M), M ∈ ET , A be a Jonsson set, and M ⊆ A. The
extension q (q ∈ SJ(A)) of type ð to À is called an heir of ð if for all ϕ(x, v̄n) ∈
Σn+1(M ∪ x) and ā ∈ An such that q ` ϕ(x, ā), there is a tuple m̄ ∈Mn such that
p ` ϕ(x, m̄).

Thus, if M ≺∃ N and p ∈ SJ(M), then the heirs of the type ð on N are exactly
these types q ∈ SJ(N) such that p ∼M q.

We have the following technical lemmas.

Lemma 2. There exists a maximum element in Ωp.

Proof. It su�ces to prove that Ωp satis�es the condition of Zorn's lemma. Let
{ξi : i ∈ I} be a linear chain in Ωp, Ji = {j ∈ I : ξj ≥ ξi}, i ∈ I. It is clear that the
set {Ji : i ∈ I} is centered, that is, the intersection of any �nite number of terms is
non-empty. Let D be an ultra�lter over I, containing {Ji : i ∈ I}; M , pi ∈ SJ(M)
such that M ⊇ A, pi ∈ ξi, i ∈ I. Let p′ ∈ SJ(M) be such that for every tuple
m̄ of elements from M , for every existential formula ϕ(x̄, ȳ) of the language L(A)
ϕ(x̄, m̄) ∈ p′ if and only if {i ∈ I : ϕ(x̄, m̄) ∈ pi} ∈ D. Obviously, that p ⊆ p′.

Let us show that p′ ≥ pi for any i ∈ I. Indeed, let ϕ(x̄, ȳ) be some existential
formula of the language L(A), m̄ ∈M , ϕ(x̄, m̄) ∈ p′. Then K = {j ∈ I : ϕ(x̄, m̄) ∈
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pj} ∈ D, but Ji ∈ D, so K ∩ Ji ∈ D. Let j ∈ K ∩ Ji. It is clear that ϕ(x̄, m̄) ∈ pj .
But j ∈ Ji, whence pj ≥A pi, therefore, ϕ(x̄, ȳ) is representable in pi. Thus p

′ ≥A pi,
i ∈ I. It follows that [p′]A ≥A ξi, i ∈ I. �

Lemma 3. If T is a J-stable, existentially complete Jonsson theory, p ∈ SJ(M),
M ⊆ B, p′ ∈ SJ(B) is the heir of type p, then p ∼M p′.

Proof. Obviously, p ≥M p′. Let ϕ(x̄, ȳ) be an existential formula of the language
L(M), b̄ ∈ B, ϕ(x̄, b̄) ∈ p′, ϕ(x̄, b̄) = ψ(x̄, b̄, m̄1), m̄1 ∈M . And let d be the schema
de�ning p (and p′). Then ϕ(x̄, b̄) ∈ p′ ⇒ |= (dψ)(b̄∧m̄1) ⇒ |= ∃z̄(dψ)(z̄∧m̄1) ⇒
Ì |= ∃z̄(dψ)(z̄∧m̄1), therefore there exists b̄′ ∈ M such that M |= (dψ)(b̄′∧m̄1),
therefore ψ(x̄, b̄′, m̄1) ∈ p ⇒ ϕ(x̄, b̄′) ∈ p. �

Lemma 4. If T is a J-stable, existentially complete Jonsson theory, p ∈ SJ(M),
M ⊆ B, q ∈ SJ(B), p ⊆ q and p ∼M q, then q is the heir of p.

Proof. Let d be the schema that de�nes the type ð. Obviously, the formula θ(x̄, ȳ) =
¬(ϕ(x̄, ȳ) ↔ (dϕ)(ȳ)) is not representable in ð. Since q ≥A p, θ(x̄, ȳ) is not
representable in q. Then for any b̄ ∈ B ¬θ(x̄, b̄) ∈ q. It follows that for any b̄ ∈ B
ϕ(x̄, b̄) ∈ q if and only if |= (dϕ)(b̄). �

Lemma 5. If A ⊆ M ∩ N , p ∈ SJ(M), q ∈ SJ(N), p � A = q � A and p, q does
not fork over A, then p ∼A q.

Proof. Let M ∪ N ⊆ M̃ , M̃ be ∃-saturated model Ò of cardinality > 2|L(A)|.
Then there exists a f automorphism M̃ , identical on À and f(p′) = q′, where p′,

q′ are the heirs of p, q over M̃ respectively. Then, applying Lemma 2, we have
p ∼M p′ ∼A q′ ∼N q. But ∼M,N implies ∼A. Therefore, p ∼A q. �

Lemma 6. If T is a J-stable, existentially complete Jonsson theory, p ∈ SJ(A),
then Ωp has a unique maximal (i.e. largest) element.

Proof. Let M ⊇ A be an arbitrary model of T , p′ be arbitrary not forking over À
extension of ð overÌ. Let us show that p′ ≥A q for any q ⊇ p, where q is a complete
type over some model N . Let c̄ |= q, and M1 be a model containing À such that
t(M1, N ∪ c̄) does not fork over À. It is obvious that t(M1, A ∪ c̄) does not fork
over À. According to the symmetry property of forking, t(c̄,M1 ∪ A) (= t(c̄,M1))
does not fork over A (and contains ð). By Lemma 4, p′ ∼A t(c̄,M1).

Now we will show that t(c̄,M1 ∪ N) does not fork over A ∪ N (= N). Assume
that this is not the case. Then there is a tuple m̄ ∈M1 such that t(c̄, m̄∪N) forks
over N , whence t(m̄,N ∪ c̄) forks over N . But t(m̄,N ∪ c̄) does not fork over A and
even more so N . We got a contradiction.

So, t(c̄,M1 ∪N) does not fork over N . By Lemma 2, we have t(c̄,M1 ∪N) ≥A
t(c̄, N) = q. Then p′ ∼A t(c̄,M1) ≥A t(c̄,M1 ∪ N) ≥A q. Therefore, [p′]A is the
largest element of Ωp. �

Let denote by βJ(p) the largest element of Ωp.
Let us introduce the following relation JNFLP (Jonsson nonforking according to

Lascar-Poizat) on P ×A.

De�nition 16. Let T be a J-stable, existentially complete Jonsson theory.

(1) If p ∈ SJ(B), A ⊆ B, then (p,A) ∈ JNFLP ⇔ βJ(p) = βJ(p � A).
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(2) If p is an arbitrary existential type, then (p,A) ∈ JNFLP ⇔ there is a
type p′ ∈ SJ(A ∪ dom(p)), that p ⊆ p′ and (p′, A) ∈ JNFLP .

Theorem 9. In J-stable existentially complete Jonsson theory, the relation JNFLP
satis�es Axioms 1-7.

Proof. Axioms 1, 2, 3, 4, 7 are trivial to check.
Axiom 6 holds for κ = |L|+. Suppose the opposite. Let p ∈ SJ(A) and for any

A1 ⊆ A, if |A1| < κ, then (p,A1) 6∈ JNFLP . Obviously, |A| ≥ κ = |L|+. There
is a sequence 〈Aα : α < |L|+〉 such that |Aα| ≤ |L|, Aα ⊆ Aβ for α < β < |L|+
and (p � Aα+1, Aα) 6∈ JNFLP . Let M ⊇

⋃
α
Aα be an arbitrary existentially closed

submodel of the semantic model of T of cardinality |T |, pα ⊇ p � Aα such that
pα ∈ SJ(M) and [pα]Aα is the largest element in Ω(p�Aα). Then 〈{pα : α < |L|+};≥〉
is a strictly decreasing sequence. Hence, there are formulas ϕα(x̄, ȳα) ∈ L, α < |L|+
such that ϕα(x̄, ȳα) representable in pα, but not representable in pα+1. It is clear
that for α 6= γ ϕα(x̄, ȳα) 6= ϕγ(x̄, ȳγ), since there is no set of cardinality > |L|
formulas in the language L. Contradiction.

Axiom 5 holds for µ =
(
2|T |

)+
. Indeed, let p ∈ SJ(B), (p,A) ∈ JNFLP ,

A ⊆ B ⊆ C. According to Axiom 6, there is A0 ⊆ A such that |A0| ≤ |L|,
(p,A0) ∈ JNFLP .

Case 1: Let C be an existentially closed submodel of the semantic model M of
T , C |= T . Let A0 ⊆ M04∃C. If p′ ∈ SJ(C), p ⊆ p′, (p′, B) ∈ JNFLP , then
(p′, A0) ∈ JNFLP . Hence, (p′,M0) ∈ JNFLP . Hence p′ is the heir of p′ � M0.
There are no more such types than |SJ(M0)| ≤ 2|T |.

Case 2: C 6|= T . Then we take a model N ∈ ET such that N ⊇ C.
|{q ∈ SJ(C) : p ⊆ q&(q, A) ∈ JNFLP}| ≤

≤ |{q ∈ SJ(N) : p ⊆ q&(q, A) ∈ JNFLP}| ≤ 2|T |.

�

The following theorem is the gain of Theorem 19.8 [23] and is the main result of
this section.

Theorem 10. If the theory Fr(X) is a J-stable, then the concepts JNF and JNFLP
coincide.

Proof. Follows from Theorem 8 and Theorem 9. �

Thus, for a �xed fragment of some Jonsson subset of the semantic model of
some �xed J -stable existentially complete Jonsson theory, the equivalence of binary
relations JNF and JNFLP is proved. Moreover, for JNF in this class of theories, a
more detailed version of Theorem 10 from [24] was obtained.

The obtained results with these binary relations provide an additional opportunity
to characterize the behavior of existential types in the study of the considered
fragment of the Jonsson subset of the given Jonsson theory's semantic model.

4. Strongly minimal sets on the pregeometry of the semantic model

of a fixed Jonsson theory

The results of this section are natural generalizations of classical results on the
properties of the algebraic closure within the framework of the study of Jonsson
strongly minimal sets [26].
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One of the interesting advances in the modern Model Theory research is the
realization of the local properties of the geometry of strongly minimal sets. In [25],
E. Hrushovski obtained remarkable results using the geometric theory of stability,
which signi�cantly in�uenced the development of methods and ideas for studying
the global properties of structures. These model-theoretical features play an impor-
tant role in Hrushovski's proof of the Mordell-Lang hypothesis for �eld functions.

The Model Theory apparatus associated with the notion of strongly minimality
is fairly well developed for complete theories. Therefore, transferring from the above
apparatus the basic concepts associated with the concept of strongly minimality for
�xed formula subsets of the semantic model of Jonsson theory, we set the condition
that the semantic model is saturated in its power, i.e. the considered theory must
be perfect.

This section is devoted to the study of the basic concepts of local properties
of the geometry of strongly minimal sets on formula subsets of some existentially
closed model. Within the framework of studying the combinatorial properties of
pregeometry de�ned on Jonsson sets, results are obtained related to strongly minimal
Jonsson sets. The minimum structures and, accordingly, the pregeometries and
geometries of the minimum structures are determined. The concepts of dimension,
independence, and basis in Jonsson strongly minimal structures for Jonsson theories
are considered.

Strongly minimal sets and their properties are re�ected in the works [25], [26],
[27]. A natural generalization would be to consider Jonsson analogs of strongly
minimal arbitrary subsets of the semantic model of some �xed Jonsson theory.

The notion of strong minimality, both for sets and theories, played a decisive
role in obtaining a result on the description of uncountably categorical theories.

It is clear from the de�nition of Jonsson sets that they are arranged very simply
in the sense of the Morley rank. It turns out that elements from the set-theoretic
di�erence (holes) of the closure and the set have rank 0, i.e. they are all algebraic.

The second point of the usefulness of the de�nition of the Jonsson set is that by
closing a given set, we get some existentially closed models. This, in turn, enables
us to study the Morley's rank for an arbitrary fragment of the considersd set.
Morley's rank is some ordinal-valued estimate for the independence of the elements
of the set generating the fragment. For complete theories, one of the conditions for
the correctness of the de�nition of the Morley's rank is saturation. In the case of
Jonsson theories, when they are imperfect, saturation for existential types in the
semantic model is required. Thus, when working with Jonsson theories, the concept
of independence can arrive at both through nonforking and Morley's rank. To study
the behavior of the elements of a hole in the case of Jonsson sets, one can always
consider the ∀∃-consequences, which are true in the above-mentioned closures of
the Jonsson set. In view of the above, it follows that the considered set of sentences
will be a Jonsson theory. Within the framework of the newly introduced de�nitions,
strongly minimal Jonsson sets were considered and described. To transfer from the
apparatus of Model Theory, developed for complete theories, the basic concepts
associated with the concept of strongly minimality for �xed formula subsets of the
semantic model of the above Jonsson theory, we need the semantic model to be
saturated in its power, i.e. the theory in question must be perfect.
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Recall that Jonsson theory has a semantic model C of su�ciently large cardinality.
The semantic models of a perfect Jonsson theory are uniquely determined by their
cardinality. We will consider not all subsets of C, but only Jonsson subsets.

Let us de�ne the Morley's rank for existentially de�nable subsets of the semantic
model.

We want to assign to each Jonsson subset of X of the semantic model an ordinal
(or perhaps −1 or ∞) � its Morley's rank, denoted by MR.

Let T be a fragment of some Jonsson set, and it is a perfect Jonsson theory, C
be a semantic model, X be a de�nable set of C.

De�nition 17. MR(X) ≥ 0 if and only if X is nonempty; MR(X) ≥ λ if and
only if MR(X) ≥ α for all α < λ (λ is limit ordinal); MR(X) ≥ α+ 1 if and only
if in X there is an in�nite family Xi of pairwise disjoint ∃-de�nable subsets such
that MR(Xi) ≥ α for all i.

Then Morley's rank of the set X is MR(X) = sup{α |MR(X)} ≥ α.
Moreover, we will assume that MR(X) = −1 and MR(X) =∞, if MR(X) ≥ α

for all α (in the latter case, we say that X has no rank).

De�nition 18. The Morley's degree MD(X) of a Jonsson set X, having Morley's
rank α, is the maximum length d of its decomposition X = X1∪...∪Xn into disjoint
existentially de�nable subsets of rank α.

In the case of rank 0, the degree of an existentially de�nable subset is simply
the number of its elements. If an existentially de�nable subset has no rank, then
its Morley's degree is not de�ned either.

Consider Jonsson minimal sets. Note that a strongly minimal set is a set of rank
1 and degree 1.

We will everywhere assume that the language L is countable. The considered
theory T is an existentially complete perfect Jonsson theory in the countable
language L.

Consider an example of an algebraic closure in Jonsson strongly minimal theories.
If K is an algebraically closed �eld and A ⊆ K, then acl(A) is an algebraically

closed sub�eld generated by A.
The following properties of the Jonsson algebraic closure are valid for any subset

D of the semantic model of the Jonsson theory T .
Let M be some existentially closed submodel of the semantic model for a �xed

theory in the language L, and D ⊆M be a Jonsson strongly minimal set.
Let D ⊆Mn be an in�nite ∆-de�nable set, where ∆ ⊆ L is the set of existential

formulas of a given language.

De�nition 19. We say that D is Jonsson minimal in M if for any ∆-de�nable
Y ⊆ D either Y is �nite or D\Y is �nite.

If φ(v, a) is a formula that de�nes D, then we can say that φ(v, a) is also Jonsson
minimal.

De�nition 20. We say that D and ϕ are Jonsson strongly minimal if ϕ is Jonsson
minimal in any existentially closed extension N from M .

De�nition 21. We say that a theory T is Jonsson strongly minimal if the formula
v = v is Jonsson strongly minimal (that is, if M ∈ ModET , then M is Jonsson
strongly minimal)
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Consider aclD is an algebraic closure restricted to D. Recall that b is Jonsson
algebraic over A if there is a formula ϕ(v, a) ∈ ∆ with a ∈ A such that ϕ(M,a) is
�nite.

For A ⊆ D let aclD(A) = {b ∈ D : b be a Jonsson algebraic over A}.
The following well-known properties of the algebraic closure [9] are also valid

for the Jonsson algebraic closure of any subset D of the semantic model of the
theory T .

Lemma 7. (1) acl(acl(A)) = acl(A) ⊇ A.
(2) If A ⊆ B, then acl(A) ⊆ acl(B).
(3) If a ∈ acl(A), then a ∈ acl(A0) for some �nite A0 ⊆ A.

Lemma 8 (Exchange). Suppose that D ⊂M is Jonsson strongly minimal, A ⊆ D
and a, b ∈ D. If a ∈ acl(A ∪ {b})\acl(A), then b ∈ acl(A ∪ {a}).

The notion of independence, which generalizes linear independence in vector
spaces, as well as in algebraically closed �elds, algebraic independence can also be
de�ned in a Jonsson strongly minimal set.

Let M ∈ModET , and D be a Jonsson strongly minimal set in M .

De�nition 22. We say that A ⊆ D is Jonsson independent if a /∈ acl(A\{a}))
for all a ∈ A. If C ⊂ D, we say that A is Jonsson independent over C if a /∈
acl(C ∪ (A\{a})) for all a ∈ A.

De�nition 23. We say that A is a Jonsson basis for Y ⊆ D if A ⊆ Y is Jonsson
independent and acl(A) = acl(Y ).

It is clear that any maximal Jonsson independent subset of Y is a Jonsson basis
for Y .

De�nition 24. If Y ⊆ D, then the Jonsson dimension of the set Y is the cardinality
of the Jonsson basis for Y .

Let J dimY denote the Jonsson dimension of Y .
Note that if D is uncountable, then J − dim(D) =| D |, since the language is

countable and acl(A) is countable for any countable A ⊆ D.
For Jonsson strongly minimal theories, each model is determined up to isomorphism

by its own Jonsson dimension.

Theorem 11. Let T be Jonsson strongly minimal theory. If M,N ∈ModET , then
M ∼= N if and only if J dim(M) = J dim(N).

Proof. Similar to the proof of Theorem 6.1.11 from [26]. �

To adapt the uncountable categoricity within the framework of the study of
Jonsson theory, the concept of the central type was used. This concept is needed
for additional information about Jonsson theory, and also technically the fact was
used that the central type, after replacing a variable with a constant, turned into a
theory, moreover, a complete one, and it was closely related to the original Jonsson
theory in the sense that the class of existentially closed models of this new theory
did not di�er from the old one. It is well known from the work [2] that enrichment
of a language with a unary predicate and a constant preserves the de�nability
of the type in the enrichment, i.e. the enrichments discussed in this article are
permissible. But at the same time, we know about the existence of a counterexample
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of Jonsson theory, which, when enriched with a unary predicate, loses the concept
of Jonssonness. This example is the theory of �elds of characteristic 0. It is well
known that the �eld theory of characteristic 0 is not locally modular. In this regard,
in order to exclude in advance such situations as the case of an example of �eld
theory that are Jonsson teories, we assume that the operator cl, which de�nes the
pregeometry on Jonsson theories, will be the algebraic closure operator, which is
equal to the de�nable closure operator, i.e. cl = acl = dcl. An example of a Jonsson
theory in which dcl = acl is an example of vector spaces. In particular, for the
operator cl, which de�nes the pregeometry in the language of the signature of the
�eld theory of characteristic 0, it is true that cl = acl, but cl 6= dcl. Since the
main result of this section on uncountable categoricity is proved for Jonsson strong
minimality of central type, this assumption is correct because strongly minimal
theories always admit acl as an operator cl.

For any automorphism of the semantic model, for any Jonsson subsets of the
semantic model, the following result is true.

Theorem 12. Let T be Jonsson theory, X be a Jonsson subset of the semantic
model C of the theory T , a ∈ C. Then a ∈ acl(X)⇔ there are at most �nitely many
elements f(a) when f runs through the automorphisms C that �x X pointwise.

Proof. Take a ∈ acl(X). Let ϕ(υ) be L(X)-formula such that a ∈ ϕ(C) and ϕ(C)
is �nite. For any automorphism f of the model C �xing X pointwise, f(a) ∈ ϕ(C).
Accordingly, the images of the element a under the automorphisms of C that �x X
pointwise form a �nite set.

Conversely, let a /∈ acl(X), so for any L(X)-formula ϕ(υ), if a ∈ ϕ(C), then ϕ(C)
is in�nite. Let a0, ..., an be di�erent elements realizing tp(a/X). For each formula
ϕ(υ) ∈ tp(a/X) there is some element b ∈ ϕ(C), b 6= a0, ..., an. Since tp(a/X) is
closed under �nite conjunction, tp(a/X) ∪ {¬(υ = ai) : i ≤ n} consistent and can
be expanded to complete type over X ∪ {a0, ..., an} so that any element an+1 that
implements this type satis�es the condition an+1 |= tp(a/X), an+1 6= a0, ..., an.
Thus, there are in�nitely many realizations of type tp(a/X) in C, and each of them
is the image of a under some automorphism C �xing X pointwise.

Similar reasoning shows that a ∈ dcl(X)⇔ f(a) = a for every automorphism f
of the model C that �xes X pointwise. �

Hence it follows that the de�nable closure dcl(A) of the Jonsson set A, that is,
the set of all elements de�nable over A coincides with the set of elements invariant
under all automorphisms over A.

Theorem 12 implies that an element b is algebraic over A if and only if it has
only �nitely many conjugates over A.

Further, using Jonsson strongly minimal sets, we consider some properties of the
combinatorial geometry of the algebraic closure.

It is well known that in the proof of Morley's uncountable categoricity theorem,
the properties of the algebraic closure on strongly minimal sets are essentially used.
Using Jonsson strongly minimal sets, we study the combinatorial geometries of the
algebraic closure.

Let X be a subset of the semantic model of some �xed Jonsson theory and let
cl : P (X)→ P (X) be an operator on the set of subsets X. We say that (X, cl) is a
J-pregeometry if the following conditions are satis�ed:

1) if A ⊆ X, then A ⊆ cl(A) and cl(cl(A)) = cl(A);
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2) if A ⊆ B ⊆ X, then cl(A) ⊆ cl(B);
3) (exchange) A ⊆ X, a, b ∈ X and a ∈ cl(A ∪ {b}), then a ∈ cl(A), b ∈

cl(A ∪ {a});
4) (�nite character) If A ⊆ X and a ∈ cl(A), then there is a �nite A0 ⊆ A such

that a ∈ cl(A0).
We say that A ⊆ X is closed if cl(A) = A.
Note (by Theorem 12 and Lemma 7) that if D is Jonsson strongly minimal, one

can de�ne a Jonsson pregeometry by de�ning cl(A) = acl(A) ∩D for A ⊆ D. We
generalize basic ideas about independence and dimension from Jonsson strongly
minimal sets to an arbitrary Jonsson pregeometries.

De�nition 25. If (X, cl) is a Jonsson pregeometry, we say that A is Jonsson
independent if a /∈ cl(A \ {a}) for all a ∈ A, and B is a J-basis for Y if B ⊆ Y is
J-independent and Y ⊆ acl(B).

If A ⊆ X, we also consider the localization clA(B) = cl(A ∪B).
If (X, cl) is a J-pregeometry, then we say that Y ⊆ X is Jonsson independent

over A, if Y is Jonsson independent in (X, clA).
dim(Y/A) is the dimension of Y in the localization (X, clA), dim(Y/A) is called

the dimension of Y over A.

De�nition 26. We say that a J-pregeometry (X, cl) is a J-geometry if cl(∅) = ∅
and cl({x}) = {x} for any x ∈ X.

We distinguish some properties of the pregeometry that will play an important
role.

De�nition 27. Let (X, cl) be a J-pregeometry. We say that (X, cl) is trivial if
cl(A) =

⋃
a∈A

cl({a}) for any A ⊆ X. We say that (X, cl) is modular if, for any �nite-

dimensional closed sets A,B ⊆ X, holds Jdim(A ∪ B) = Jdim(A) + Jdim(B) −
Jdim(A ∩B).

(X, cl) is locally modular if (X, cla) is modular for some a ∈ X.

Theorem 13. Let (X, cl) be a J-pregeometry. The following conditions are equi-
valent:

(1) (X, cl) is modular;
(2) if A ⊆ X is closed and non-empty, b ∈ X, x ∈ cl(A, b), then there exists

a ∈ A such that x ∈ cl(a, b);
(3) if A,B ⊆ X are closed and non-empty, x ∈ cl(A,B), then there exist a ∈ A

and b ∈ B such that x ∈ cl(a, b).

Proof. Similarly to the proof of Lemma 8.1.13 from [26]. �

5. Jonsson independence for JSp(A)

In Model Theory, one of the modern approaches to studying the properties of
elements of the considered complete stable theory's models is forking. The concept
of nonforking is analogous of the concept of independence between elements, and
also, respectively, between the considered formula subsets of a �xed model. The
notion of independence leads to geometric combinatorial connections between the
considered formula subsets, which allows one to obtain the necessary results in
speci�c posed model-theoretic problems. Within the framework of the study of
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complete theories, the concept of a simple theory was de�ned, and this concept
signi�cantly allowed the use of the properties of nonforking in wide classes of
theories than stable theories. So, for example, the following theorem shows that
in any simple theory a good system of independence necessarily arises from forking.

Theorem 14 (Kim-Pillay [9], p. 233). Let T be a simple theory, I be a good
independence system of the theory T . Then, for each tuple ā ∈ Ω and A ⊆ B
of small subsets of Ω, (ā, B,A) ∈ I if and only if tp( ¯a/B) does not fork over A.

In this section, a point of view is given that makes it possible to transfer the
concept of stability, simplicity of a theory and nonforking of types, and, accordingly,
independence to a class of theories that, generally speaking, are not complete,
and thus this approach is useful in the study of inductive classes of algebras, the
theory which, generally speaking, are not complete, but satisfy the natural algebraic
conditions of joint embedding and amalgam.

Let T be an arbitrary Jonsson theory of the signature σ, ET be the class of
all existentially closed models of the theory T . Let [T ] ∈ JSp(A)/./, then E[T ] =⋃

∆∈[T ]E∆.

Let us call the factor spectrum JSp(A)/./ homogeneous, if for any [T ]1, [T ]2 ∈
JSp(A)/./ it follows that E[T ]1 ∩ E[T ]2 = ∅.

Let X ⊆ CT , where CT be the semantic model of the considered Jonsson theory
T . We say that the setX is a∇-cl-subset of the model CT ifX satis�es the following
conditions:

(1) X is a ∇-de�nable set (this means that there is a ∇-formula in the language
L, whose solution in CT is the set X, where ∇ is a kind of formula, for
example ∃,∀,∀∃);

(2) cl(X) = M , M ∈ ET , where cl is some closure operator that de�nes a
J-geometry over CT in the sense of De�nition 26 (for example, cl = acl or
cl = dcl).

Let T be a Jonsson theory, S∇(X) be the set of all ∇-complete n-types over
X, which consistent with T for every �nite n. We say that a Jonsson theory T is
a ∇-λ-stable if for every T -existentially closed model of A, for every subset X of
the set A, from the fact that |X| ≤ λ it follows that |S∇(X)| ≤ λ. We will call a
Jonsson theory ∇-stable if it is a ∇-λ-stable for some λ.

The class [T ] ∈ JSp(A)/./ is called a ∇-stable if each theory ∆ ∈ [T ] is ∇-stable.
Let [T ] ∈ JSp(A)/./, X be the class of all∇-cl-subsets of the semantic model C[T ]

and P be the class of all ∇-types (not necessarily complete), let J∇NF (Jonsson
∇-nonforking) ⊆ P×X be some binary relation. Let us write in the form of axioms
some conditions imposed on J∇NF .

Axiom 1. If (p,X) ∈ J∇NF , f : X → Y are isomorphic embeddings, then
(f(p), f(X)) ∈ J∇NF .

Axiom 2. If (p,X) ∈ J∇NF and q ⊆ p, then (q,X) ∈ J∇NF .
Axiom 3. If X ⊆ Y ⊆ Z and p ∈ S∇(Z), then (p,X) ∈ J∇NF if and only if

(p, Y ) ∈ J∇NF and (p � Y,X) ∈ J∇NF .
Axiom 4. If X ⊆ Y , dom(p) ⊆ Y and (p,X) ∈ J∇NF , then there exist q ∈

S∇(Y ) such that p ⊆ q and (q,X) ∈ J∇NF ).
Axiom 5. There is a cardinal µ such that if X ⊆ Y ⊆ Z, p ∈ S∇(Y ) and

(p,X) ∈ J∇NF , then
∣∣{q ∈ S∇(Z) : p ⊆ q, (q,X) ∈ J∇NF}

∣∣ < µ.
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Axiom 6. There is a cardinal κ, that for every p ∈ P and every X ∈ X , if
(p,X) ∈ J∇NF , then there exist X1 ⊆ X such that |X1| < κ and (p,X1) ∈ J∇NF .

Axiom 7. If p ∈ S∇(X), then (p,X) ∈ J∇NF .
Let [T ] ∈ JSp(A)/./. Let's introduce the notation:
[T∇] = {∆ ∈ [T ] : ∆ is a ∇-λ-stable, ∇-complete}.

Theorem 15. Let JSp(A)/./ be a homogeneous factor spectrum, [T ] ∈ JSp(A)/./,
then in the class [T∇] the relation J∇NF satis�es Axioms 1-7.

Proof. Due to the homogeneity of the factor spectrum, it follows that each class
E[T ] is elementary with respect to all spectrum. From this follows the perfection of
the spectrum itself. Next we use the proof of Theorem 9 modulo the change of ∇,
since the perfectness of spectrum, [T ]∗ is a model complete theory and, accordingly,
any formula in the language of this theory is equivalent to ∀ ∩ ∃. �

We now de�ne the abstract concept of Jonsson independence.
Let [T ] ∈ JSp(A)/./, I = {(ā, Y,X)|ā ∈ C[T ], X, Y be ∇-cl-subsets of the

semantic model C[T ], such thatX ⊆ Y }. We will call a set I a Jonsson independence
system of the class [T ] if the following 6 properties are satis�ed:

10 (invariance) for every triple (ā, Y,X) ∈ I and automorphism f of the model
C[T ], (f(ā), f(Y ), f(X)) ∈ I;

20 (local character) for every ā and Y , there is a countable subset X ⊆ Y such
that (ā, Y,X) ∈ I;

30 (�nite character) for each ā, X and Y , (ā, Y,X) ∈ I if and only if, for all �nite
tuples b̄ in Y , (ā, X ∪ b̄, X) ∈ I;

40 (extension) for each ā, X and Y , there exists a tuple ā′, that has the same
length and type over X, as ā, so that (ā′, Y,X) ∈ I;

50 (symmetry) for each ā, b̄ andX, (ā, X∪b̄, X) ∈ I if and only if (b̄, X∪ā, X) ∈ I;
60 (transitivity) for each ā andX ⊆ Y ⊆ Z, (ā, Z,X) ∈ I if and only if (ā, Y,X) ∈

I è (ā, Z, Y ) ∈ I.
It follows from the properties of 30 and 50 that if Y , Y ′ ⊇ X ∇-cl-subsets of

the semantic model C[T ], then (b̄, Y ′, X) ∈ I ∀b̄ ∈ Y if and only if (b̄′, Y,X) ∈ I
∀b̄′ ∈ Y ′ . In this case, we say that Y and Y ′ are Jonsson independent over X.

Note also that if ā′ is a subsequence of ā and (ā, Y,X) ∈ I, then (ā′, Y,X) ∈ I
also. Indeed, according to the property 30 it su�ces to check that (ā′, X ∪ b̄, X) ∈ I
for all b̄ ∈ Y . We know that (ā, X ∪ b̄, X) ∈ I. By the symmetry property 50,
(b̄, X ∪ ā, X) ∈ I, whence (b̄, X ∪ ā′, X) ∈ I, according to property 30 and again by
property 50 we have (ā′, X ∪ b̄, X) ∈ I.

A Jonsson independent system I of class [T ] is called good if it satis�es the
following property:

70 (amalgamation) let X be an existentially closed model of the theory T , Y ,
Y ′ ⊇ X is Jonsson independent over X, b̄, b̄′ are tuples in C[T ], that have the same

type p over X and satisfy (b̄, Y,X) ∈ I, (b̄′, Y ′, X) ∈ I, respectively; then there is
some tuple c̄ in C[T ], that implements the same type as b̄ over Y and b̄′ over Y ′,
and satisfying (c̄, Y ∪ Y ′, X) ∈ I.

De�nition 28. We will say that ā ∈ C[T ] does not depend on Y over X and write

ā⊥JXY , if (ā, Y,X) ∈ I, where I is a Jonsson good independence system.

De�nition 29. We will call a Jonsson theory T Jonsson simple (J-simple) if for
any ∇-cl-set of B, for any p ∈ S∇(B) there exists a ∇-cl-set A0 ⊂ B: |A0| ≤ |T |,
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such that p does not fork over A0. A class [T ] ∈ JSp(A)/./ is called J-simple if
every theory ∆ ∈ [T ] is J-simple.

We have a Jonsson version of the Kim-Pillay theorem 14:

Theorem 16. Let the class [T ] ∈ JSp(A)/./ be J-simple, perfect, ∇-complete.
Then for each tuple ā ∈ C[T ] and ∇-cl-Jonsson sets X ⊆ Y of the model C[T ] the
following conditions are equivalent:

(1) ā⊥JXY in the language of theory ∆ for each ∆ ∈ [T ];
(2) (tp(ā/Y ), X) ∈ J∇NF in the language of theory ∆ for each ∆ ∈ [T ];
(3) for all types p ∈ P, consistent with [T ]∗, X ∈ X the type p does not fork

over X (in the classical sense of S. Shelah [8]), where [T ]∗ is the center of
the class [T ].

Proof. The equivalence of conditions (1) and (2) follows from Theorem 14. The
equivalence of conditions (2) and (3) follows from the following implications: since
the class [T ] is perfect, then from Theorem 15 we have that for a given ∇ in the
class [T ] the relation J∇NF satis�es axioms 1-7, and then by Theorem 8 we have
a transition to classical stability in the sense of S. Shelah. �

6. Uncountably categorical central type of the Robinson spectrum

In this section, we study the model-theoretical properties of the Robinson spectrum
of an arbitrary signature's arbitrary model. The interest of specialists in Model
Theory and universal algebra in the study of ω-categorical universals ([10], sec. 5
from the appendix) is well known. We will consider a more general situation: the
Robinson theory is a special case of the Jonsson theory, namely, it is the Jonsson
universal. As an additional tool, the technique of working with the central types of
the �xed spectrum is used, the elements of which are the Jonsson universals. The
central type is obtained by enriching the language with additional constants and a
unary predicate. A criterion for uncountable categoricity is obtained for the class
of Robinson spectrum in the language of central types.

De�nition 30. A theory T is called Robinson theory if it satis�es the following
conditions:

(1) T has at least one in�nite model;
(2) T is universally axiomatizable;
(3) T admits the joint embedding property
(4) T admits the amalgamation property.

Let T be a Robinson theory, A be an arbitrary model of signature σ. The
Robinson spectrum of the model A is the set:

RSp(A) = {T |T is Robinson theory in the language of signature σ and
A ∈Mod(T )}.

Consider RSp(A)/./ the factor set of the Jonsson spectrum of the model A with
respect to ./.

If T is an arbitrary Robinson theory in the language of signature σ, then E[T ] =⋃
E∆

∆∈[T ]

is the class of all existentially closed models of class [T ] ∈ RSp(A)/./.

Let A be an arbitrary model of signature σ. Let |RSp(A)/./| = |K|, K be some
index set. We say that the class [T ] ∈ RSp(A)/./ is a ℵ-categorical if any theory
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∆ ∈ [T ] is a ℵ-categorical and, respectively, the class RSp(A)/./ will be called a
ℵ-categorical if for each j ∈ K the class [T ]j is a ℵ-categorical.

De�nition 31 ([28], p. 93). An enrichment T̃ is called admissible if the ∇-type
(this means that the ∇ subset of the language Lσ and any formula from this type

belongs to ∇) in this enrichment is de�nable within the framework of T̃Γ-stability,
where Γ is the enrichment of the signature σ.

De�nition 32 ([28], p. 93). A Robinson theory T is called hereditary if in any
of its admissible enrichments, any extension is a Robinson theory. The class [T ] ∈
RSp(A)/./ will be called hereditary if each theory ∆ ∈ [T ] is hereditary.

Consider the general scheme for obtaining the central type for an arbitrary
Jonsson theory. Let's denote it by (]).

Let C be a semantic model of the theory T , A ⊆ C. Let σΓ = σ ∪ Γ, where
Γ = {P} ∪ {c}. Let T̄ = Th∀(C, a)a∈P (C) ∪ Th∀(ET ) ∪ {P (c)} ∪ {�P ⊆�}, where
P (C) is the existentially closed submodel of C, {�P ⊆�} is an in�nite set of sentences
expressing the fact that the interpretation of the symbol P is an existentially closed
submodel in the language of the signature σΓ. That is, the interpretation of the
symbol P is a solution of the equation P (C) = M ⊆ ET in the language σΓ. Due
to the heredity of the theory T , the theory T̄ is a Jonsson theory. Consider all
completions of the theory T̄ in the language of signature σΓ. Since T̄ is a Jonsson
theory, then it has its own center, let us denote it by T̄ ∗, this center is one of the
above completions of the theory T̄ . When the signature σΓ is restricted to σ ∪ P ,
due to the laws of �rst-order logic, since the constant c no longer belongs to this
signature, you can replace this constant with a variable symbol, for example x. And
then the theory T̄ will be a complete 1-type for the variable x.

Using this schema for a class, we get the central type of the class. Consider the
class [T ] ∈ JSp(A)/./. Let Th(C)[T ]) = [T ]∗. For any ∆ ∈ [T ] ∈ JSp(A)/./ denote

the theory obtained by the scheme (]), by ∆̄. Consider the class [T̄ ] and then class
[T̄ ]∗ after restriction according to the scheme (]) becomes the center type of the
class [T̄ ] and is denoted by P c[T ].

We say that a model M ∈ ET is Jonsson minimal if for any de�nable X ⊆ M
eitherX is �nite orM\X is �nite. We say that a theory T Jonsson strongly minimal,
if every model M ∈ ET is minimal. A non-algebraic type containing a Jonsson
strongly minimal formula is called Jonsson strongly minimal.

Theorem 17 ([29], p. 298). Let T be universal theory, complete for existential
sentences, having a countably algebraically universal model. Then T has an algebrai-
cally prime model, which is (Σ,∆)-atomic.

De�nition 33 ([29], p. 304). A model A is called the ∆-good algebraically prime
model of the theory T if A is a countable model of T and for each model B of the
theory T , each n ∈ ω and all a0, . . . , an−1 ∈ A, b0, . . . , bn−1 ∈ B if

(A, a0, . . . , an−1) ≡∆ (B, b0, . . . , bn−1),

then for each an ∈ A there is some bn ∈ B such that (A, a0, . . . , an) ≡∆ (B, b0, . . . , bn).

Theorem 18 ([29], p. 309). Let T be ∀∃-theory, complete for existential sentences,
admitting R1. Then the following conditions are equivalent:

(1) T has an algebraically prime model;
(2) T has (∃,∆)-atomic model;
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(3) T has (∆,∃)-atomic model;
(4) T has a ∆-good algebraically prime model;
(5) T has a single algebraically prime model.

Theorem 19. Let [T ] be hereditary class from RSp(A)/./, then the following
conditions are equivalent:

(1) any countable model from E[T ] has an algebraically prime model extension

in E[T ];

(2) P c
[T ]

is the strongly minimal type, where P c
[T ]

is the central type of [T ].

Proof. (1)⇒(2). Consider a semantic model C[T̄ ] of the class [T ]. From De�nitions 2
and 3 it follows that the model C[T ] is ω -universal. Since its cardinality is greater

than countable, consider its countable elementary submodelD. Since the model C[T ]

is existentially closed (see Lemma 1), its elementary submodelD is also existentially
closed. Hence we have that it is countably algebraically universal. Hence it remains
to apply Theorem 17, according to which every theory ∆ ∈ [T ] has an algebraically
prime model A0. We de�ne by induction Aδ+1, which will be an algebraically prime
model extension of Aδ and Aλ =

⋃
{Aδ | δ < λ}. Then let A =

⋃
{Aδ|δ < ω1}.

Suppose that B |= ∆ and cardB = ω1. To show that B ≈ A, let us expand B into a
chain {Bδ|δ < ω1} of countable models. Due to the Jonssonness of the theory ∆, this
is possible. De�ne a function g : ω1 → ω1 and a chain {fδ : Agδ → Bδ | 0 < δ < ω1}
of the isomorphisms by induction on δ:

1) g0 = 0 and f0 : A0 → B0;
2) gλ =

⋃
{gδ|δ < λ} and fλ =

⋃
{fδ|δ < λ};

3) fδ+1 is equal to the union of the chain {fγδ |γ ≤ ρ}, which is determined by
induction on γ;

4) f0
δ+1 = fδ, f

λ
δ+1 =

⋃
{|fγδ+1|γ < λ};

5) suppose that fγ1 : Agδ+γ → Bδ+1. If f
γ
δ+1 is mapping onto, then ρ = γ.

Otherwise, by virtue of the algebraic primeness of Agδ+γ+1, we can extend fγδ+1 to

fγ+1
δ+1 : Agδ+γ+1 → Bδ+1;
6) g(δ + 1) = gδ + ρ.
It is clear that f =

⋃
{| fδ | δ < ω1} maps isomorphically A to B. Now it remains

to apply Theorem 18. Since B is an arbitrary model of the theory ∆, and A is the
single algebraic prime and existentially closed model by virtue of the condition
and construction, it follows that E∆ for each ∆ ∈ [T ] in uncountable cardinality
has a single model, which means that the semantic model C[T ] is saturated, that

is, the class [T ] will be perfect. It follows that Mod[T ]∗ = E[T ]. Therefore, [T ]∗

is a ω1-categorical. By virtue of the Lachlan-Baldwin theorem, in the theory [T ]∗

there exists a strongly minimal formula. Passing to the central type, we get a
nonprinciple type that contains a Jonsson strongly minimal formula, therefore, the
type is Jonsson strongly minimal.

(2)⇒ (1). Since P c
[T ]

is a strongly minimal type, when returning to the signature

σΓ = σ∪Γ this type becomes [T ]∗ theory. Since this theory is the center of the class
[T ], then it is complete. Let us show that [T ]∗ is ω1-categorical. By inductance,
for any models A,B ∈ Mod[T ]∗ there exists models A′, B′ ∈ E[T ] and isomorphic

embeddings f : A→ A′, g : B → B′. Without loss of generality, we can assume that
|A′| = |B′| = ω1. Suppose A � B, then A′ � B′. Therefore, there is ϕ(x) ∈ B(At)
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such that A′ |= ϕ(x) and B′ |= ¬ϕ(x). Since [T ] is a hereditary class, then [T ] ∈
RSp(A)/./ and A′ ∈ Mod([T ]∗) due to the universal axiomatizability of this class
and the fact that A′, as an existentially closed model, is isomorphically embedded
in the semantic model C of the class [T ]. Since [T ]∗ = Th(C), which means it is
complete, then [T ]∗ ` ∃xϕ(x). Since A′ and B′ are Jonsson minimal, then either
ϕ(A′) is �nite, or A′\ϕ(A′) is �nite. Let ϕ(A′) be �nite, then there is a ∀∃-sentence
ψ that shows that ϕ(A′) is �nite and [T ]∗ ` ∀∃(ϕ&ψ), hence B′ |= ψ(x), but
B′ |= ψ(x)&¬ϕ(x), but at the same time, since A′, B′ ∈ E[T ], A

′ ≡∀∃ B′, then we

got a contradiction with a strongly minimality.
If the de�nable complement of the formula is �nite in the model A′, the proof

of the contradiction is similar to the above. That is, we have shown that [T ]∗ is a
ω1-categorical.

Since the theory [T ]∗ is a ω1-categorical, then by Morley's uncountable categoricity
theorem, it is perfect. Then [T ]∗ is a model complete theory and Mod[T ]∗ = E∆

for each ∆ ∈ [T ] (by the criterion of the perfectness of Jonsson theory), i.e.
Mod[T ]∗ = E[T ]. If [T ]∗ is a model complete, then any isomorphic embedding

is elementary. Since [T ]∗ is a complete theory, by virtue of Morley's theorem, we
obtain what is required. �
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