E.S.Mustafin, I.M.Pudov, A.K.Aitymov
Ye.A.Buketov Karaganda State University
(E-mail: edigemus@mail.ru)

Analysis of the effectiveness of dispersant for oil spills

The acceptability and effectiveness in some situations, the practical application of dispersants for oil spill at sea is now well recognized and recorded in official documents in many countries and international organizations. To evaluate the quality offered to control the oil spills dispersants in our laboratory studies were conducted using the recommended techniques. Studies have been conducted on the impact of the proposed dispersant Kashagan oil in sea water of the Caspian Sea. On the basis of research has been done evaluating the effectiveness of dispersants at 5 °C, 25 °C and is given recommendation for their use.

Key words: crude oil, topped oil, oil spill, emulsification, dispersants, salinity, viscosity, density.

Oil and petroleum products are a significant reasons of environmental pollution, particularly water of oceans and seas [1]. Contact with petroleum hydrocarbons in the marine environment has a negative impact on almost all of its components, including fisheries, phyto-and zooplankton, algae, benthos, marine mammals and birds [2, 3].

One of the most important means for the elimination of accident consequences are dispersants which are designed to dissipate (emulsification) floating oil slicks in a large volume of water in the form of crushed oil droplets. When this is achieved by lowering the concentration of oil in the vicinity of the spill, enhanced biodegradation processes of pollution of the marine environment is restored interaction with the atmosphere, reduced fire hazard spill, preventing the possibility of contamination of the coastal strip, emersion of «chocolate mousse» [4, 5].

In connection with the prospects of oil production in the Kazakhstan sector of the Caspian Sea (KSCS), the question arises about analysis opportunities and the efficient use of different dispersants for oil spills [6].

The purpose of this study was to evaluate the effectiveness of a number of dispersants towards the Kashagan oil using artificial sea water of different salinity at different ambient temperatures. In the experiments were used Kashagan oil, artificial seawater (salinity 0, 6, 12, 18, 35 ‰), dispersants of various manufacturers: Corexit EU 9500, Dasic Slickgone, Inipol IP-90, Inipol IPF, FLD-1, FLD-2, Bioversal HC (Table 1).

<table>
<thead>
<tr>
<th>Dispersant</th>
<th>Approved for use in the following countries:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corexit EU 9500</td>
<td>France (for use at sea), UK, USA</td>
</tr>
<tr>
<td>Inipol IP-90</td>
<td>France (for use at sea)</td>
</tr>
<tr>
<td>Inipol IPF</td>
<td>France (for use in freshwater)</td>
</tr>
<tr>
<td>Dasic Slickgone</td>
<td>France (for use at sea), the UK, Cyprus, Norway</td>
</tr>
<tr>
<td>Bioversal HC</td>
<td>Italy, Spain</td>
</tr>
</tbody>
</table>

Oil spills on water natural weathering processes occur light petroleum oil fractions, so test the effect of dispersants in the model is carried out under reduced crude.

Topped oil fraction was obtained at atmospheric pressure by ST RK ISO 3405–2008. Crude and topped oil tested for viscosity and density to determine the suitability of dispersants at the temperature 5–25 °C. Kinematic viscosity of crude and topped oil measured capillary viscometer IWF-2. Density was determined by areometers.

Kinematic viscosity of Kashagan oil — 11,6 mm²/s², density — 0,846 g/cm³.

Topped oil at 250 °C oil is too high in viscosity and is not suitable for further work. Oil topped in a temperature range up to 220 °C at ambient temperature of 5 °C solidifies and becomes uncomfortable for the study. Thus, the test proved to be suitable oil, topped at 200 °C (Table 2).

Conducted to determine the effectiveness of dispersants according to the procedure adopted in the UK as the standard for analysis of dispersants, WSL 448 LR [7].
Table 2

<table>
<thead>
<tr>
<th>№</th>
<th>Distillation temperature, ºC</th>
<th>Measurement temperature, ºC</th>
<th>Density, g/cm³</th>
<th>Viscosity, mm²/s²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>20</td>
<td>0,862</td>
<td>12,1</td>
</tr>
<tr>
<td>2</td>
<td>220</td>
<td>20</td>
<td>0,870</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>20</td>
<td>1,014</td>
<td>559,9</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>5</td>
<td>0,870</td>
<td>15,4</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>5</td>
<td>0,880</td>
<td>Not measured</td>
</tr>
</tbody>
</table>

Efficiency index dispersant defined as the mass fraction of the oil were tested, which is dispersed as fine droplets in the aqueous phase at the test conditions.

The concentration of oil in water was measured by an extraction-photometric method: oil dispersed in the aqueous phase was extracted with chloroform, and then the optical density of the oil chloroform solutions at 580 nm. For operation was used the spectrophotometer UV-1800, a light absorbing layer length — 10 mm. Oil concentration was determined using the calibration curve — dependence of the optical absorption of the oil concentration of the solution in chloroform (Fig. 1).

![Figure 1](image1.png)

Figure 1. Calibration graph of optical density the concentration of the oil in chloroform (oil, topped at 200 ºC)

![Figure 2](image2.png)

Figure 2. Effectiveness of dispersants at 25 ºC, salinity 16 ‰

Thus, for selected conditions, in particular at a temperature of 25 ºC and salinity 16 ‰ dispersant is most effective mark Inipol IPF, followed dispersants Corexit 9500, Inipol IP-90. FLD-1, Dasic Slickgone...
NS, FLD-2 and Bioversal HC dispersants are weakly dispersing agents for the Kashagan oil under these conditions (Fig. 2).

Effectiveness of dispersants is strongly dependent on the ambient temperature (Fig. 3, 4).

The effectiveness of dispersants increases with increasing temperature, while the differences in the efficiency of dispersants are stored — the most effective dispersant Inipol IPF, hereinafter — Inipol IP-90, FLD-1, and least effective dispersants — FLD-2, Bioversal HC.

Dispersants are manufactured primarily for use in ocean waters with an average salinity of 35 ‰. Salinity of the Caspian Sea below the ocean, especially in the KSCS which varies in the range 6–16 ‰. Therefore, we conducted research on the effectiveness of dispersants for different values of salinity in the range of 0–35 ‰ (Table 3).

<table>
<thead>
<tr>
<th>Salinity, ‰</th>
<th>Dispersants</th>
<th>NS, FLD-2 and Bioversal HC</th>
<th>Corexit 9500</th>
<th>Inipol IP-90</th>
<th>Inipol IPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.23</td>
<td>17.31</td>
<td>18.92</td>
<td>5.34</td>
<td>9.94</td>
</tr>
<tr>
<td>6</td>
<td>38.49</td>
<td>33.88</td>
<td>44.93</td>
<td>10.86</td>
<td>18.23</td>
</tr>
<tr>
<td>12</td>
<td>60.58</td>
<td>42.17</td>
<td>51.38</td>
<td>20.07</td>
<td>30.20</td>
</tr>
<tr>
<td>16 (sea water, Aktau)</td>
<td>68.77</td>
<td>48.85</td>
<td>65.37</td>
<td>11.02</td>
<td>36.66</td>
</tr>
<tr>
<td>35</td>
<td>55.06</td>
<td>41.25</td>
<td>95.57</td>
<td>9.02</td>
<td>86.36</td>
</tr>
</tbody>
</table>

Table 3

Comparison of the dispersants effectiveness at different salinities (25 ºC)
As can be seen, salinity of water influences different to the effectiveness of dispersants. Most effective in saltwater ocean with corresponding 35 ‰ are Corexit 9500 and Dasic Slickgone NS. However, their effectiveness at a salinity of the Caspian Sea (from 6 to 16 ‰) is significantly reduced, while Corexit 9500 is one of the preferred dispersants and Dasic Slickgone NS sharply reduces its effectiveness with 86,36 to 36,66 ‰.

The most effective at salinity of the Caspian Sea (from 6 to 16 ‰) can be considered Inipol IPF and Corexit 9500. Inipol IP-90 is less effective than the above Inipol IPF and Corexit 9500. Dasic Slickgone NS, Bioversal HC and FLD-1, FLD-2 for the Caspian Sea are unacceptable due to low efficiency values (Fig. 5).

Conclusions

1. Effectiveness of dispersants.

At a temperature of 25 °C and 16 ‰ salinity is the most effective dispersant brand Inipol IPF, whose efficiency is 77,84 ‰, followed by dispersing Inipol IP-90 — 55,10 ‰ and FLD-1 — 45,01 ‰. Dispersants FLD-2 — 27,03 ‰ and Bioversal HC — 20,77 ‰ are weakly dispersing agents for the Kashagan oil under these conditions. It should be noted that in the absence of dispersants, natural conditions give 14,62 ‰ of the dispersion at 25 °C.

Thus, in the case of Kashagan oil spills possible to use dispersants discussed the following reagents: Inipol IPF, Corexit 9500 and Inipol IP-90.

2. Temperature influence.

The effectiveness of dispersants decreases with decreasing temperature. However, the sequence number of reagents for dispersing activity is fully preserved. So, at 5 °C the best dispersant properties against Kashagan oil dispersant showed brand Inipol IPF, whose efficiency is 56,19 ‰ and dispersant Inipol IP-90 — 44,84 ‰. Dispersants FLD-1 — 32,11 ‰ and FLD-2 — 12,39 ‰ are weakly dispersing agents for the Kashagan oil under these conditions. Dispersant Bioversal HC 9,63 ‰ with efficiency at a temperature of 5 °C practically no effect, as dispersing natural conditions at this temperature give 8,60 ‰ of the dispersion.

3. Effect of salinity.

Reducing salinity of the water in tests reduces the efficiency of dispersants. Most effective in saltwater corresponding to ocean water with 35 ‰ are Corexit 9500 and Dasic Slickgone NS, with salt water from 6 to 16 ‰ the most effective are Inipol IPF and Corexit 9500.
References
7 Alan Lewis. WSL (Warren Spring laboratory) method of the rotating flask īr 448 Measuring the showiness of dispersants on oil spills. — P. 5.

Е.С.Мустафин, И.М.Пудов, А.К.Айтымов
Мұнай тәуілдеге қолданылатын диспергенттер тімділігінің сапасын

Қазіргі кезде тәуілдеге мұнай тәуілі салдарын жою үшін бірқатар жағдайлда диспергентерді қолданып, әдет болғандықтан, зығында қолдану құтқарған елдерде және Һалықаралық ыйымдарда, қажет мүмкіндігін таңдайды және ресми қажетті болуы керек. Мұнай тәуілі салдарынан қорында үшін қолданылған қатушылық диспергентердің партнерлары барысында бізден зертханада қолданылады. Жылдың 12 міндет өзіне, диспергентердің өмірін құралған мұнай қарсы різді қолданып, мұнай жүргізілді және оларды қолдану бойынша көмек береді.

Е.С.Мустафин, И.М.Пудов, А.К.Айтымов
Анализ эффективности диспергентов для применения при разливах нефти

Приемлемость и эффективность в ряде ситуаций практического применения диспергентов для ликвидации нефтяных разливов в море в настоящее время обсуждены и зафиксированы в официальных документах во многих странах и международных организациях. Для оценки качества предлагаемых для борьбы с разливах нефти диспергентов нашей лабораторией проводились исследования с помощью рекомендуемых методик. Были проведены исследования влияния предлагаемых диспергентов на нефть Каспийского месторождения в морской воде Каспийского моря. На основании проведенных исследований была сделана оценка эффективности диспергентов при температурах 5 °C, 20 °C и дана рекомендация по их применению.

References
7 Alan Lewis. WSL (Warren Spring laboratory) method of the rotating flask īr 448 Measuring the showiness of dispersants on oil spills, p. 5.
Сведения об авторах

Мустафин Едиге Суиндикович — руководитель испытательной лаборатории инженерного профиля «Физико-химические методы исследования» доктор химических наук, профессор, Карагандинский государственный университет имени академика Е.А.Букетова.

Пудов Игорь Михайлович — специалист испытательной лаборатории инженерного профиля «Физико-химические методы исследования», Карагандинский государственный университет имени академика Е.А.Букетова.

Айтымов Айдос Кудайбергенович — инженер испытательной лаборатории инженерного профиля «Физико-химические методы исследования», Карагандинский государственный университет имени академика Е.А.Букетова.

Information about authors

Mustafin Edige Suindykovich — head of laboratory of the engineering profile «Physico-chemical methods of investigation», doctor of chemical sciences, professor, Ye.A.Buketov Karaganda State University.

Pudov Igor Michailovich — specialist of the laboratory of the engineering profile «Physico-chemical methods of investigation», Ye.A.Buketov Karaganda State University.

Aitymov Aidos Kudaibergenovich — engineer of the laboratory of the engineering profile «Physico-chemical methods of investigation», Ye.A.Buketov Karaganda State University.