Influence of nanocatalytic systems on the hydrogenation of model object — anthracene

The influence of nanocatalysts β-FeOOH, Fe(OA)$_3$, Fe$_3$O$_4$ and spherical catalysts NiO/SiO$_2$, Fe$_2$O$_3$/SiO$_2$ on the hydrogenation process of model object is evaluated. These catalysts are established to be new developed catalytic additives promoted deeper chemical modification and destruction of hydrocarbons, as a result they can increase the yield of light products. It is shown that spherical catalysts NiO/SiO$_2$ and Fe$_2$O$_3$/SiO$_2$ can be used for hydrogenation of multiplet systems, such as coal, coal tar or its fractions.

Key words: hydrogenation of model object, anthracene, nanocatalytic systems, multiring hydrocarbon, destruction, spherical catalysts, donor of hydrogen.

Nowadays the search of new catalysts and technologies of solid hydrocarbonaceous materials and oil residues is one of the most important directions in the development of the petrochemical industry. A significant issue in the hydrogenation of heavy hydrocarbon feedstocks is improving the efficiency of heterogeneous catalytic reactions. Therefore, great attention is paid for the development of scientific approaches in creating new catalytic systems possessing the activity and selectivity. Many alternatives of catalysts, in particular nanocatalysts for hydrogenation process are prepared [1].

Selection of effective catalysts and their use in the destructive hydrogenation of heavy hydrocarbon feedstock make possible to carry out the process in milder conditions and increase the conversion of the organic mass and the quality of distillate products. Model compounds, such as anthracene, phenanthrene, pyrene, naphthalene, etc. often are used to determine the activity and selectivity of selected catalysts in the hydrogenation process. It is allowed to reveal the mechanisms for processing of heavy coal and elaborate the science-based methods for predicting their behavior [2]. Although much experimental work has been done on the hydrogenation of polyaromatic hydrocarbons, there is still a demand by the industry for an economical and efficient commercial process. Therefore, in the present work the catalytic hydrogenation process of model object was investigated in the presence of nanocatalytic systems.

Experimental Part

To study the influence of nanocatalysts and spherical catalysts on the product yield of model objects in the hydrogenation process several experiments were carried out. The conditions are given in the Table 1. Premixed input components were placed in a pressure reactor (autoclave). The moment of reaching operating temperature by autoclave is considered at the beginning of reaction. The heating rate of the autoclave was 10 °C per min. The products of hydrogenation were washed by benzene.

<table>
<thead>
<tr>
<th>№</th>
<th>Antracene, g</th>
<th>β-FeOOH</th>
<th>Fe(OA)$_3$</th>
<th>Fe$_3$O$_4$</th>
<th>NiO/SiO$_2$</th>
<th>Fe$_2$O$_3$/SiO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Table 1

Conditions for hydrogenation of anthracene in the presence of nanocatalysts β-FeOOH, Fe(OA)$_3$, Fe$_3$O$_4$ and spherical catalysts NiO/SiO$_2$, Fe$_2$O$_3$/SiO$_2$
Nanocatalysts β-FeOOH, Fe(OA)$_3$ and Fe$_2$O$_3$ were prepared according to the procedure [3–5]. Spherical catalysts NiO/SiO$_2$, Fe$_2$O$_3$/SiO$_2$ were prepared by an impregnation method. Ash from thermal power station was used as the substrate, the content of which has been investigated by X-ray method: SiO$_2$=55,391 %, Al$_2$O$_3$=2,014 %, Fe$_2$O$_3$=7,715 %, TiO$_2$=1,745 %, CaO=2,606 %, K$_2$O=2,354 %, MgO=1,531 %, Na$_2$O=2,734 %, other unidentified compounds=1 %. The substrate was impregnated by 10 % solutions of the salts of nickel and iron (NiCO$_3$ and FeSO$_4$·9H$_2$O) followed by drying and kilning. The surface topography of spherical catalysts was observed by probe microscope GSPM-5400. The parameters of the porous structure of the samples were studied by gas adsorption instrument ASAP Micromeritics (USA). The fractional composition of the hydrocarbon part of model object was detected by high performance liquid chromatography Agilent Technologies 5975 and identification of compounds was quantified by mass spectral database NIST 98.

Discussion of Results

It is shown from Figures 1–3 that the synthesized catalysts have retained a spherical structure which is similar to conformation of substrate. It can be assumed from these data that the nature of the substrate played a key role in getting the nanoscale particles and highly refined structure. It is showed that more efficient catalysts in processing of hydrocarbon raw materials are superfine particles distributed uniformly throughout the volume of raw materials [6–9]. Appropriateness of application of nanoparticles in catalysis is connected with the chemical activity which is proportional to the specific surface of the catalyst. Many properties of nanoparticles depend on their size, so it is possible to manage activity and selectivity of nanocatalysts by changing its ones [10].

Figure 1. The surface topography of substrate SiO$_2$

Figure 2. The surface topography of spherical catalyst NiO/SiO$_2$

Figure 3. The surface topography of spherical catalyst Fe$_2$O$_3$/SiO$_2$
The analysis of the adsorption isotherms of nitrogen on the synthesized catalysts showed the different pore sizes (Fig. 4). The isotherms (curves 1, 3) can be attributed to type IV, which has hysteresis loop. Shape of the hysteresis loops varies considerably for different porous materials. It should be pointed out that the adsorption for this type of isotherm is summarized by micropores and mesopores with the capillary condensation. The adsorption isotherm (curve 2) is characteristic for microporous adsorbents and such isotherms are considered to determine only volume of micropores.

1 — substrate SiO2; 2 — spherical catalyst Fe2O3/SiO2; 3 — spherical catalyst NiO/SiO2

Figure 4. The adsorption isotherms of nitrogen on the spherical catalysts

Pore size distribution analysis of spherical catalysts by the method DFT indicates that the spherical catalyst Fe2O3/SiO2 has micro-mesoporous structure and spherical catalyst NiO/SiO2 is characterized by presence of only mesopores (Fig. 5, 6).

Figure 5. Pore size distribution of spherical catalyst Fe2O3/SiO2 by the method DFT

Figure 6. Pore size distribution of synthesized catalyst NiO/SiO2 by the method DFT
The product yield of hydrogenation process of anthracene in the presence of nanocatalysts \(\beta\)-FeOOH, \(\text{Fe(OA)}_3\), and \(\text{Fe}_3\text{O}_4\) is shown in the Table 2.

<table>
<thead>
<tr>
<th>Name</th>
<th>(\beta)-FeOOH</th>
<th>(\text{Fe(OA)}_3)</th>
<th>(\text{Fe}_3\text{O}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphtalene</td>
<td>2.15</td>
<td>2.43</td>
<td>2.7</td>
</tr>
<tr>
<td>1-Butynaphthalene</td>
<td>20.93</td>
<td>11.04</td>
<td>5.5</td>
</tr>
<tr>
<td>2-Ethylidiphenyl</td>
<td>1.03</td>
<td>0.85</td>
<td>2</td>
</tr>
<tr>
<td>1,2,3,4-Tetraantracene</td>
<td>59.4</td>
<td>55.55</td>
<td>7.3</td>
</tr>
<tr>
<td>9,10-Dihydroantracene</td>
<td>15.98</td>
<td>23.54</td>
<td>77.12</td>
</tr>
<tr>
<td>Antracene</td>
<td>0.51</td>
<td>6.21</td>
<td>5.4</td>
</tr>
</tbody>
</table>

It follows from this data that in the hydrogenation of anthracene using nanocatalyst \(\beta\)-FeOOH the hydrogenation product yield is 75.38 % and degradation product yield is 24.11 % and unreacted material yield is 0.51 %. In the case using the nanocatalyst \(\text{Fe(OA)}_3\), the hydrogenation product yield is 79.09 % and degradation product yield is 14.32 %, an unreacted material yield is 6.21 %. By adding 1 % \(\text{Fe}_3\text{O}_4\) hydrogenation product and degradation product yields are 84.65 % and 9, 87 %, respectively, unreacted material yield is 5.4 %. Comparison of these results showed a significant change in the ratio of hydrogenation and hydrogenolysis products and the ratio of conversion. At the point of hydrogenolysis product yield and unreacted materials, the most efficient nanocatalyst is \(\beta\)-FeOOH; at the point of the hydrogenation products yield, the most effective nanocatalyst is \(\text{Fe}_3\text{O}_4\) (Fig. 7). On the contrary, authors [11] noted that the destruction of the hydrocarbons did not happen at the hydrogenation of anthracene and naphthalene in tetralin due to less activity of the catalyst.

\[\text{Figure 7. The ratio of hydrogenation and hydrogenolysis products in the presence of nanocatalysts} \]

The product yield of hydrogenation process of anthracene in the presence of spherical catalysts \(\text{NiO/SiO}_2\), \(\text{Fe}_3\text{O}_4\)/\(\text{SiO}_2\) at 300 °C and 400 °C is shown in the Table 3.

<table>
<thead>
<tr>
<th>Name</th>
<th>(\text{NiO/SiO}_2)</th>
<th>(\text{Fe}_3\text{O}_4)/(\text{SiO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 °C</td>
<td>400 °C</td>
</tr>
<tr>
<td>1-Methylnaphtalene</td>
<td>1.68</td>
<td>0.71</td>
</tr>
<tr>
<td>1,6-Dimethylnaphtalene</td>
<td>0.11</td>
<td>24.78</td>
</tr>
<tr>
<td>1,2,3,4-Tetraantracene</td>
<td>65.48</td>
<td>0.18</td>
</tr>
<tr>
<td>9,10-Dihydroantracene</td>
<td>32.73</td>
<td>69.48</td>
</tr>
<tr>
<td>Antracene</td>
<td>0.74</td>
<td>1.02</td>
</tr>
</tbody>
</table>
In the hydrogenation of anthracene at 300 °C the hydrogenation products yield is 98.2 % in the presence of spherical catalyst NiO/SiO₂. At 400 °C the hydrogenation product and degradation product yields are 69.66 % and 25.49 %, respectively. There is negligible quantity in the content of unreacted materials. In the presence of spherical catalyst Fe₂O₃/SiO₂ hydrogenation product yield is 98.98 % at 300 °C. At 400 °C the hydrogenation product is 86.47 %, degradation product yield is 11.56 %. Based on these data, the spherical catalysts NiO/SiO₂ and Fe₂O₃/SiO₂ are the most efficient ones at the point of hydrogenation product yield and are not inferior to nanocatalysts β-FeOOH, Fe(OA)₃ and Fe₃O₄, furthermore these catalysts have a number of advantages, such as the availability and low cost.

Authors [12] describes the hydrocracking of polycyclic hydrocarbons by multistep mechanism including hydrogenation, hydroisomerization, cracking and repeated hydrogenation. Similarly, anthracene is hydrogenated to di- and tetraracene at the first stage of step-wise transformation. Then cyclohexane rings of tetraracene are subjected to cracking and isomerization to naphthalene. It is known that hydrogenated polycyclic aromatic hydrocarbons are more active hydrogen donors, so they can cause of a deep conversion of a feedstock. Therefore, the high hydrogenation product yield can be explained by catalytic action which relates to the hydrogenation of aromatic polycyclic hydrocarbons.

Thus, the influence of nanocatalysts β-FeOOH, Fe(OA)₃, Fe₂O₃ and spherical catalysts NiO/SiO₂, Fe₂O₃/SiO₂ on the hydrogenation process of model object is evaluated. It is established that the nanocatalysts and spherical catalysts increase the formation rate of hydro-derivatives of anthracene, in particular 9,10-dihydroanthracene and 1,2,3,4-tetrahydroantracene. The most optimum amount of the catalyst systems at ratio of 1 % allows to increase of hydrogen donor which prevents condensation reactions and decreases the stability of the associates. It is demonstrated that spherical catalysts NiO/SiO₂ and Fe₂O₃/SiO₂ can be used for hydrogenation of multiplet systems, such as coal, coal tar or its fractions. These catalysts are established to be new developed catalytic additives promoted deeper chemical modification and destruction of hydrocarbons, as a result spherical catalysts can increase the yield of light products.

References

8. Зекель Л.А., Малолетнев А.С., Озеренко А.А., Ширгир М.Я. Основы синтеза и применения псевдогомогенных катализитеров для гидрогенизации углей и нефтяного сыра // Химия твердого топлива. — 2007. — № 1. — С. 35–42.

Нанокаталитических систем на гидрогеназацию модельного объекта — антрацена

Моделирование антраценовых гидрогенизированных продуктов β-FeOOH, Fe(OH)₃, Fe₃O₄ и нанокатализаторов NiO/СiO₂, Fe₃O₄/СiO₂ сферических катализаторов на процесс гидрогеназации модельного объекта — антрацена. Установлено, что синтезированные каталитические системы способствуют более глубокой химической модификации и деструкции углеводородного сырья. Показано, что синтезированные нанокатализаторы могут быть использованы для гидрогеназации углеводородных систем, таких как уголь, каменноугольная смола или их фракции.

References

Сведения об авторах

Хинтай Су — заведующий лабораторией доктор химических наук, профессор, Синьцзянский университет, Урумчи, Китай.
Ма Фэн Юнь — доктор химических наук, профессор, Синьцзянский университет, Урумчи, Китай.
Байкенов Мурзабек Исполович — доктор химических наук, профессор, Карагандинский государственный университет имени академика Е.А.Букетова.
Татеева Алма Баймаганбетовна — доцент кандидат химических наук, Карагандинский государственный университет имени академика Е.А.Букетова, e-mail: almataateeva@mail.ru
Ахметкаримова Жанар — докторант, Карагандинский государственный университет имени академика Е.А.Букетова.
Information about authors

Xiintai Su — Doctor of chemical sciences, Professor, Head of laboratory, Xinjiang University, Urumqi, China.
Fengyun Ma — Doctor of chemical sciences, Professor, Xinjiang University, Urumqi, China.
Baikenov Murzabek Ispolovich — Doctor of chemical sciences, Professor, Ye.А. Buketov Karaganda State University.
Tateeva Alma Baimaganbetovna — Associate professor, Candidate of chemical sciences, Ye.А. Buketov Karaganda State University, e-mail: almatateeva@mail.ru
Akhmetkarimova Zhanar — PhD student, Ye.А. Buketov Karaganda State University.
Tusipkhan Almaz — PhD student, Ye.А. Buketov Karaganda State University.
Matayeva Aisha Zharasovna — Master student, Ye.А. Buketov Karaganda State University, e-mail: mataeva_aisha@mail.ru
Balabekova Diana Amanzholovna — Master student, Ye.А. Buketov Karaganda State University.
Tleubergenova Alina Baurzhanovna — Master student, Ye.А. Buketov Karaganda State University.