INTERACTION OF BROWN COAL WITH ISOPROPANOL IN A MICROWAVE FIELD

Satpaeva Zh.B.1,2, Fazylov S.D.1, Tateyeva A.B.2, Karipova G.Zh.2,
Arinova A.E.1,2, Issayeva A.Zh.2

1Institute of Organic Synthesis and Chemistry of Coal, Karaganda, Kazakhstan
2Academician Ye.A. Buketov Karaganda State University,
Karaganda, Kazakhstan
satpaeva_zh@mail.ru

Modified coal is a potential source of high-quality crude mountain wax. We investigated the effect of microwave treatment on the interaction of brown coal of the isopropyl alcohol in the presence of \textit{p}-toluensulfonate (0.01 mole) as catalyst. Conditions of alkylation treatment: the reaction time in the microwave field was limited in all cases to 1 hour; the weight of the coal was 5 g; amount of the catalyst was 0.01 mole, and the amount of alcohol was 50 ml. Microwave exposure was carried out on the device brand LG-MS2022G (2.45 GHz). After alkylation, the solid residue was subjected to extraction treatment with a benzene carrier and a mixture of 2-propanol-benzene (1:1). The extractive bitumen’s obtained were fractionated with sulfuric ether into waxes and ethers. The group composition of waxes was investigated by alkaline hydrolysis with 5\% alcohol solution of potassium hydroxide, separating the saponification products in a similar way. Chromato-mass-spectrometric (CMS) analysis of alkylated products was carried on an Agilent Technologies 7890A.

It is established that the most optim al conditions for the process are: irradiation power of 150-300W, catalyst amount of 0.01 mole. As the data of CMS analysis, under these conditions the tar content on the resulting bitumen is reduced to a minimum (from 1.38\% in the initial to 0.33\% in the modified bitumen).

The use of microwave irradiation increase the bituminous product an average of 1.5–2 times than traditional technology. An increase microwave irradiation power above 500 W leads to an increase in resinous substances in the recovered bitumen.

According to CMS benzene extract of wax substances contains oxygen-containing hydrocarbons (esters) (26.2\%), aromatic hydrocarbons (33.9\%) and alkanes (29.4\%). The heptan extract contains mainly paraffinic hydrocarbons (53.1\%), and hexane extracts it is found oxygen-containing (51.0\%) and paraffinic (45.8\%) hydrocarbons.